
 1

Project Oberon

The Design of an Operating System,
a Compiler, and a Computer

Revised Edition 2013

Niklaus Wirth
Jürg Gutknecht

ISBN 0-201-54428-8

 2

Preface
This book presents the results of Project Oberon, namely an entire software environment for a
modern workstation. The project was undertaken by the authors in the years 1986-89, and its
primary goal was to design and implement an entire system from scratch, and to structure it in
such a way that it can be described, explained, and understood as a whole. In order to become
confronted with all aspects, problems, design decisions and details, the authors not only
conceived but also programmed the entire system described in this book, and more.

Although there exist numerous books explaining principles and structures of operating systems,
there is a lack of descriptions of systems actually implemented and used. We wished not only to
give advice on how a system might be built, but to demonstrate how one was built. Program
listings therefore play a key role in this text, because they alone contain the ultimate explanations.
The choice of a suitable formalism therefore assumed great importance, and we designed the
language Oberon as not only an effective vehicle for implementation, but also as a publication
medium for algorithms in the spirit in which Algol 60 had been created three decades ago.
Because of its structure, the language Oberon is equally well suited to exhibit global, modular
structures of programmed systems.

In spite of the small number of man-years spent on realizing the Oberon System, and in spite of its
compactness letting its description fit a single book, it is not an academic toy, but rather a versatile
workstation system that has found many satisfied and even enthusiastic users in academia and
industry. The core system described here, consisting of storage, file, display, text, and viewer
managers, of program loader and device drivers, draws its major power from a suitably chosen,
flexible set of basic facilities and, most importantly, of their effective extensibility in many
directions and for many applications. The extensibility is particularly enhanced by the language
Oberon on the one, and by the efficiency of the basic core on the other hand. It is rooted in the
application of the object-oriented paradigm which is employed wherever extensibility appears
advantageous.

In addition to the core system, we describe in full detail the compiler for the language Oberon and
a graphics system, which both may be regarded as applications. The former reveals how a
compact compiler is designed to achieve both fast compilation and efficient, dense code. The
latter stands as an example of extensible design based on object-oriented techniques, and it
shows how a proper integration with an existing text system is possible. Another addition to the
core system is a network module allowing many workstations to be interconnected. We also show
how the Oberon System serves conveniently as the basis for a multi-server station,
accommodating a file distribution, a printing, and an electronic-mail facility.

Compactness and regular structure, and due attention to efficient implementation of important
details appear to be the key to economical software engineering. With the Oberon System, we
wish to refute Reiser's Law, which has been confirmed by virtually all recent releases of operating
systems: In spite of great leaps forward, hardware is becoming faster more slowly than software is
becoming slower. The Oberon System has required a tiny fraction of the manpower demanded for
the construction of widely-used commercial operating systems, and a small fraction of their
demands on computing power and storage capacity, while providing equal power and flexibility to
the user, albeit without certain bells and whistles. The reader is invited to study how this was
possible.

But most importantly, we hope to present a worth-while case study of a substantial piece of
programming in the large for the benefit of all those who are eager to learn from the experiences
of others.

We wish to thank the many anonymous contributors of suggestions, advice, and encouragement.
In particular we wish to thank our colleagues H. Mössenböck and B. Sanders and our associates
at the Institut für Computersysteme for reading all or parts of the draft of this book. We are grateful
to M. Brandis, R. Crelier, A. Disteli, M. Franz, and J. Templ for their work in porting the Oberon

 3

System successfully to various commercially available computers, and thus making the study of
this book more worth-while for many readers. And we gratefully acknowledge the contribution of
our school, ETH, for providing the environment and support which made it possible for us to
pursue and complete this project.

Zürich, February 1992

N.W. and J.G.

 4

Preface to the 2013 edition
Comments about plans to prepare a second edition to this book varied widely. Some felt that this
book is outdated, that nobody is interested in a system of this kind any longer. "Why bother"?
Others felt that there is an urgent need for this type of text, which explains an entire system in detail
rather than merely proposing strategies and approaches. "By all means"!.

Very much has changed in these last 30 years. But even without this change, it would be
preposterous to propose and construct a system competing with existing, worldwide "standards".
Indeed, very few people would be interested in using it. The community at large seems to be stuck
with these gigantic software systems, and helpless against their complexity, their peculiarities, and
their occasional unreliability.

But surely new systems will emerge, perhaps for different, limited purposes, allowing for smaller
systems. One wonders where their designers will study and learn their trade. There is little technical
literature, and my conclusion is that understanding is generally gained by doing, that is, "on the
job". However, this is a tedious and suboptimal way to learn. Whereas sciences are governed by
principles and laws to be learned and understood, in engineering experience and practice are
indispensable. Does Computer Science teach laws that hold for (almost) ever? More than any other
field of engineering, it would be predestined to be based on rigorous mathematical principles. Yet,
its core hardly is. Instead, one must rely on experience, that is, on studying sound examples.

The main purpose of and the driving force behind this project is to provide a single book that serves
as an example of a system that exists, is in actual use, and is explained in all detail. This task drove
home the insight that it is hard to design a powerful and reliable system, but even much harder to
make it so simple and clear that it can be studied and fully understood. Above everything else, it
requires a stern concentration on what is essential, and the will to leave out the rest, all the popular
"bells and whistles".

Recently, a growing number of people has become interested in designing new, smaller systems.
The vast complexity of popular operating systems makes them not only obscure, but also provides
opportunities for "back doors". They allow external agents to introduce spies and devils unnoticed
by the user, making the system attackable and corruptible. The only safe remedy is to build a safe
system anew from scratch.

Turning now to a practical aspect: The largest chapter of the 1992 edition of this book dealt with the
compiler translating Oberon programs into code for the NS32032 processor. This processor is now
neither available nor is its architecture recommendable. Instead of writing a new compiler for some
other commercially available architecture, I decided to design my own in order to extend the desire
for simplicity and regularity to the hardware. The ultimate benefit of this decision is not only that the
software, but also the hardware of the Oberon System is described completely and rigorously. The
processor is called RISC. The hardware modules are decribed exclusively in the language Verilog.

The decision for a new processor was expedited by the possibility to implement it, that is, to make it
concrete and available. This is due to the advent of programmable gate arrays (FPGA), allowing to
turn a design into a real, functioning processor on a single chip. As a result, the described system
can be realized using a low-cost development board. This board, Xilinx Spartan-3 by Digilent,
features a 1-MByte static memory, which easily accommodates the entire Oberon System, incuding
its compiler. It is shown, together with a display, a keyboard and a mouse in the photo below. The
board is visible in the lower, right corner.

The decision to develop our own processor required that the chapters on the compiler and the
linking loader had to be completely rewritten. However, it also provided the welcome chance to
improve their clarity considerably. The new processor indeed allowed to simplify and straighten out
the entire compiler.

 5

For a description of a system to be comprehensible, the key element is the notation, formalism, or
language in which it is defined. Algol 60, published 50 years ago, was proposed as a publication
language, as a formalism in which algorithms could be defined without reference to particular
computers, or to any mechanism at all. This was a great goal, but so far it was hardly achieved.
Yet, it emphasized the importance of abstraction to be achieved by a notation with a mathematically
rigorous foundation. At least, Algol was the first language based on a formally defined syntax. Algol
was the result of the early recognition that programs must never be written just to feed computers,
but always to be understood and to be instructive to people.

In all my past work, I have tried to design a successor to Algol, that improves its rigor and at the
same time extends its applicability from numerical algorithms to software systems. From a long
sequence, starting with Algol, through Pascal, Modula, and Oberon, we have come closer to this
goal than ever before, and closer than any other language in existence. The key lay in a continued
struggle for sensible simplification.

The Oberon language, defined in 1988, underwent a revision in 2007, mostly discarding features
that were either duplications or not essential. Adaptation of the system's source code to the revised
language was, besides the change of processor, the second important reason for numerous, local
changes in this text. We summarize the various deletions of features:

1. The data types LONGINT, SHORTINT, and LONGREAL have been discarded, and with them the
concept of type inclusion.

2. The LOOP and EXIT statements (repetitions with multiple exit points) have been discarded.

3. The WITH statement (regional type guard) has been discarded.

 6

3. The RETURN statement has been discarded and is now syntactically merged with the ending of
function procedure declarations.

4. Objects declared in a procedure P are not accessible within a procedure Q that is itself local to P.
That is, objects must be either strictly local or global in order to be accessible.

5. Assignments to imported variables are not permitted (read-only export).

6. Forward procedure declarations have been discarded.

In contrast to these removals, there is a single addition (made in 2012): The data type BYTE has
been added. Its values are integers x satisfying 0 ≤ x < 256. This addition prevents the frequent
abuse of the type CHAR. The type BYTE is mainly used for elements of arrays and records in low-
level modules in order to economise the use of memory.

In spite of these two reasons for changes -- one at the highest level, the language, the other at the
lowest, the hardware -- the remainder of the book proved to be pretty stable and still valid. It has
been my desire to present the system essentially as it existed 25 years ago, without
embellishments. The chapters 3 - 5 on tasking, the display and the text, originally written by J.
Gutknecht, have been carried over virtually unchanged. Significant changes, however, were
necessary mainly in the descriptions of device drivers for keyboard and mouse. They now use the
PS-2 interface standard. The disk has been replaced by a single SD-card (flash memory) with a
standard SPI interface. The interface to the net no longer uses the RS-485 interface, but is also
based on the SPI standard. The chapters on the compiler and the linker are completely new.

Mostly thanks to the regularity of the RISC instruction set, the size of the compiler could be reduced
significantly. It now measures less than 2900 lines of program and compiles itself in about 3
seconds, which is proof of its efficiency. The entire system compiles itself in less than 10 seconds.

Considered extravagant and hardly necessary only years ago, run-time checks are generated
automatically. In particular, they cover index range checks and access to NIL-pointers. Due to their
efficiency they hardly affect run-time speed, but are a great benefit to programmers.

A welcome consequence of the simplifications of language and processor is the fact that all parts
that had been written in assembler code in 1992 -- and therefore were not included in the book --
have now been expressed in Oberon as well. Vindicating my perennial efforts to obtain a high-level
language which is powerful and flexible, and also efficient enough to express parts such as device
drivers and raster operations, this was the necessary and final step to make this book
comprehensive and complete.

References

http://www.inf.ethz.ch/personal/wirth/Oberon/Oberon07.Report.pdf

http://www.inf.ethz.ch/personal/wirth/FPGA-relatedWork/RISC.Arch.pdf

Acknowledgements
I gratefully acknowledge the valuable contributions of Paul Reed. He designed the interfaces to
various devices, such as the PS-2 and SPI, including the SD-card, acting as disk store. He
suggested many improvements and simplifications. He originally decisively suggested a re-edition
of this book of 30 year ago, and was the key impetus to do all this work. My thanks go to him.

Niklaus Wirth, September 2013

 7

Project Oberon
The Design of an Operating System,

a Compiler, and a Computer
Preface (1992)

Preface to the revised edition (2013)

1. History and motivation

2. Basic concepts and structure of the system

2.1. Introduction
2.2. Concepts
 2.2.1. Viewers
 2.2.2. Commands
 2.2.3. Tasks
 2.2.4. Tool texts as configurable menus
 2.2.5. Extensibility
 2.2.6. Dynamic loading
2.3. The system's structure
2.4. A tour through the chapters

3. The tasking system

3.1. The concept of task
3.1.1. Interactive tasks
3.1.2. Background tasks

3.2. The task scheduler
3.3. The concept of command

3.3.1. Generic actions
3.3.2. Generic text selection
3.3.3. Generic copy viewer

3.4. Toolboxes

4. The display system

4.1. Screen layout model
4.2. Viewers as objects
4.3. Frames as basic display entities
4.4. Display management

4.4.1. Viewers
4.4.2. Menu viewers
4.4.3. Cursor management

4.5. Raster Operations
4.6. Standard display configurations

5. The text system

5.1. Text as an abstract data type
5.1.1. Loading and storing
5.1.2. Editing text
5.1.3. Accessing text

5.2. Text management
5.3. Text frames
5.4. The font machinery
5.5. The edit toolbox

 8

6. The module loader

6.1. Linking and loading
6.2. Module representation
6.3. The linking loader
6.4. The toolbox of the loader
6.5. The object file format

7. The file system

7.1. Files
7.2. Implementation of files on a random-access store
7.3. Implementation of files on a disk
7.4. The file directory
7.5. The toolbox of file utilities

8. Storage layout and management

8.1. Storage layout and run-time organization
8.2. Management of dynamic storage
8.3. The kernel
8.4. The storage management's toolbox

9. Device drivers

9.1. Overview
9.2. Keyboard and mouse
9.3. Serial peripheral interface (SPI)
9.4. Serial asynchronous interface (RS 232)

10. The network

10.1. Introduction
10.2. The protocol
10.3. Station addressing
10.4. The implementation

11. A dedicated file-distribution and mail server

11.1 Concept and structure
11.2. Electronic mail service
11.3. Printing service
11.4. Miscellaneous services
11.5. User administration

12. The compiler

12.1. Introduction
12.2. Code patterns
12.3. Internal data structures and module interfaces

12.3.1. Data structures
12.3.2. Module interfaces

12.4. The parser
12.5. The scanner
12.6. Searching the symbol table, and handling symbol files

12.6.1. The structure of the symbol table
12.6.2. Symbol files

12.7. The code generator
12.7.1. Expressions
12.7.2. Relations
12.7.3. Set operations
12.7.4. Assignments

 9

12.7.5. Conditional and repetitive statements
12.7.6. Boolean expressions
12.7.7. Procedures
12.7.8. Type extension
12.7.9. Import and export, global variables
12.7.10. Traps

13. A graphics editor

13.1. History and goal
13.2. A brief user guide

13.2.1. Basic commands
13.2.2. Menu commands
13.2.3. Further commands
13.2.4. Macros
13.2.5. Rectangles
13.2.6. Oblique lines and circles
13.2.7. Spline curves
13.2.8. Constructing new macros

13.3. The core and its structure
13.4. Displaying graphics
13.5. The user interface
13.6. Macros
13.7. Object classes
13.8. The implementation

13.8.1. Module Draw
13.8.2. Module GraphicFrames
13.8.3. Module Graphics

 13.9. Rectangles and Curves
13.9.1. Rectangles
13.9.2. Oblique lines and circles

14. Building and maintenance tools

14.1. The startup process
14.2. Building tools
14.3. Maintenance tools

15. Tool and Service Modules

15.1. Basic mathematical functions
15.2. A data link
15.3. A generator of graphic macros

16. Implementation of the RISC processor

16.1. Introduction
16.2. The Arithmetic and Logic Unit (ALU)

16.2.1 Shifters
16.2.2. Multiplication
16.2.3. Division

16.3. Floating-point arithmetic
16.3.1. Floating-point addition
16.3.2. Floating-point multiplication
16.3.3. Floating-point division

 10

16.4. The Control Unit

17. The Processor's Environment

17.1. The SRAM memory
17.2. Peripheral Interfaces

17.2.1. The PS-2 interface
17.2.2. The SPI interface
17.2.3. The RS-232 interface
17.2.4. The display controller
17.2.5. The Mouse interface

 11

1 History and motivation

How could anyone diligently concentrate on his work on an afternoon with such warmth, splendid
sunshine, and blue sky. This rhetorical question was one I asked many times while spending a
sabbatical leave in California in 1985. Back home everyone would feel compelled to profit from the
sunny spells to enjoy life at leisure in the country-side, wandering or engaging in one's favourite
sport. But here, every day was like that, and giving in to such temptations would have meant the
end of all work. And, had I not chosen this location in the world because of its inviting, enjoyable
climate?

Fortunately, my work was also enticing, making it easier to buckle down. I had the privilege of
sitting in front of the most advanced and powerful workstation anywhere, learning the secrets of
perhaps the newest fad in our fast developing trade, pushing colored rectangles from one place of
the screen to another. This all had to happen under strict observance of rules imposed by physical
laws and by the newest technology. Fortunately, the advanced computer would complain
immediately if such a rule was violated, it was a rule checker and acted like your big brother,
preventing you from making steps towards disaster. And it did what would have been impossible for
oneself, keeping track of thousands of constraints among the thousands of rectangles laid out. This
was called computer-aided design. "Aided" is rather a euphemism, but the computer did not
complain about the degradation of its role.

While my eyes were glued to the colorful display, and while I was confronted with the evidence of
my latest inadequacy, in through the always open door stepped my colleague (JG). He also
happened to spend a leave from duties at home at the same laboratory, yet his face did not exactly
express happiness, but rather frustration. The chocolate bar in his hand did for him what the coffee
cup or the pipe does for others, providing temporary relaxation and distraction. It was not the first
time he appeared in this mood, and without words I guessed its cause. And the episode would
reoccur many times.

His days were not filled with the great fun of rectangle-pushing; he had an assignment. He was
charged with the design of a compiler for the same advanced computer. Therefore, he was forced
to deal much more closely, if not intimately, with the underlying software system. Its rather frequent
failures had to be understood in his case, for he was programming, whereas I was only using it
through an application; in short, I was an end-user! These failures had to be understood not for
purposes of correction, but in order to find ways to avoid them. How was the necessary insight to
be obtained? I realized at this moment that I had so far avoided this question; I had limited
familiarization with this novel system to the bare necessities which sufficed for the task on my mind.

It soon became clear that a study of the system was nearly impossible. Its dimensions were simply
awesome, and documentation accordingly sparse. Answers to questions that were momentarily
pressing could best be obtained by interviewing the system's designers, who all were in-house. In
doing so, we made the shocking discovery that often we could not understand their language.
Explanations were fraught with jargon and references to other parts of the system which had
remained equally enigmatic to us.

So, our frustration-triggered breaks from compiler construction and chip design became devoted to
attempts to identify the essence, the foundations of the system's novel aspects. What made it
different from conventional operating systems? Which of these concepts were essential, which
ones could be improved, simplified, or even discarded? And where were they rooted? Could the
system's essence be distilled and extracted, like in a chemical process?

During the ensuing discussions, the idea emerged slowly to undertake our own design. And
suddenly it had become concrete. "Crazy" was my first reaction, and "impossible". The sheer
amount of work appeared as overwhelming. After all, we both had to carry our share of teaching
duties back home. But the thought was implanted and continued to occupy our minds.

 12

Sometime thereafter, events back home suggested that I should take over the important course
about System Software. As it was the unwritten rule that it should primarily deal with operating
system principles, I hesitated. My scruples were easily justified: After all I had never designed such
a system nor a part of it. And how can one teach an engineering subject without first-hand
experience?

Impossible? Had we not designed compilers, operating systems, and document editors in small
teams? And had I not repeatedly experienced that an inadequate and frustrating program could be
programmed from scratch in a fraction of source code used by the original design? Our brain-
storming continued, with many intermissions, over several weeks, and certain shapes of a system
structure slowly emerged through the haze. After some time, the preposterous decision was made:
we would embark on the design of an operating system for our workstation (which happened to be
much less powerful than the one used for my rectangle-pushing) from scratch.

The primary goal, to personally obtain first-hand experience, and to reach full understanding of
every detail, inherently determined our manpower: two part-time programmers. We tentatively set
our time-limit for completion to three years. As it later turned out, this had been a good estimate;
programming was begun in early 1986, and a first version of the system was released in the fall of
1988.

Although the search for an appropriate name for a project is usually a minor problem and often left
to chance and whim of the designers, this may be the place to recount how Oberon entered the
picture in our case. It happened that around the time of the beginning of our effort, the space probe
Voyager made headlines with a series of spectacular pictures taken of the planet Uranus and of its
moons, the largest of which is named Oberon. Since its launch I had considered the Voyager
project as a singularly well-planned and successful endeavor, and as a small tribute to it I picked
the name of its latest object of investigation. There are indeed very few engineering projects whose
products perform way beyond expectations and beyond their anticipated lifetime; mostly they fail
much earlier, particularly in the domain of software. And, last but not least, we recall that Oberon is
famous as the king of elfs.

The consciously planned shortage of manpower enforced a single, but healthy, guideline:
Concentrate on essential functions and omit embellishments that merely cater to established
conventions and passing tastes. Of course, the essential core had first to be recognized and
crystallized. But the basis had been laid. The ground rule became even more crucial when we
decided that the result should be able to be used as teaching material. I remembered C.A.R.
Hoare's plea that books should be written presenting actually operational systems rather than half-
baked, abstract principles. He had complained in the early 1970s that in our field engineers were
told to constantly create new artifacts without being given the chance to study previous works that
had proven their worth in the field. How right was he, even to the present day!

The emerging goal to publish the result with all its details let the choice of programming language
appear in a new light: it became crucial. Modula-2 which we had planned to use, appeared as not
quite satisfactory. Firstly, it lacked a facility to express extensibility in an adequate way. And we had
put extensibility among the principal properties of the new system. By "adequate" we include
machine-independence. Our programs should be expressed in a manner that makes no reference
to machine peculiarities and low-level programming facilities, perhaps with the exception of device
interfaces, where dependence is inherent.

Hence, Modula-2 was extended with a feature that is now known as type extension. We also
recognized that Modula-2 contained several facilities that we would not need, that do not genuinely
contribute to its power of expression, but at the same time increase the complexity of the compiler.
But the compiler would not only have to be implemented, but also to be described, studied, and
understood. This led to the decision to start from a clean slate also in the domain of language
design, and to apply the same principle to it: concentrate on the essential, purge the rest. The new
language, which still bears much resemblance to Modula-2, was given the same name as the
system: Oberon [1, 2]. In contrast to its ancestor it is terser and, above all, a significant step
towards expressing programs on a high level of abstraction without reference to machine-specific
features.

 13

We started designing the system in late fall 1985, and programming in early 1986. As a vehicle we
used our workstation Lilith and its language Modula-2. First, a cross-compiler was developed, then
followed the modules of the inner core together with the necessary testing and down-loading
facilities. The development of the display and the text system proceeded simultaneously, without
the possibility of testing, of course. We learned how the absence of a debugger, and even more so
the absence of a compiler, can contribute to careful programming.

Thereafter followed the translation of the compiler into Oberon. This was swiftly done, because the
original had been written with anticipation of the later translation. After its availability on the target
computer Ceres, together with the operability of the text editing facility, the umbilical cord to Lilith
could be cut off. The Oberon System had become real, at least its draft version. This happened
around the middle of 1987; its description was published thereafter [3], and a manual and guide
followed in 1991 [5].

The system's completion took another year and concentrated on connecting the workstations in a
network for file transfer [4], on a central printing facility, and on maintenance tools. The goal of
completing the system within three years had been met. The system was introduced in the middle
of 1988 to a wider user community, and work on applications could start. A service for electronic
mail was developed, a graphics system was added, and various efforts for general document
preparation systems proceeded. The display facility was extended to accommodate two screens,
including color. At the same time, feedback from experience in its use was incorporated by
improving existing parts. Since 1989, Oberon has replaced Modula-2 in our introductory
programming courses.

References

1. N. Wirth. The programming language Oberon. Software - Practice and Experience 18, 7, (July
1988) 671-690.

2. M. Reiser and N. Wirth. Programming in Oberon - Steps beyond Pascal and Modula. Addison-
Wesley, 1992.

3. N. Wirth and J. Gutknecht. The Oberon System. Software - Practice and Experience, 19, 9 (Sept.
1989), 857-893.

4. N. Wirth. Ceres-Net: A low-cost computer network. Software - Practice and Experience, 20, 1
(Jan. 1990), 13-24.

5. M. Reiser. The Oberon System - User Guide and Programmer's Manual. Addison-Wesley, 1991.

 14

2 Basic concepts and structure of the system

2.1. Introduction
In order to warrant the sizeable effort of designing and constructing an entire operating system from
scratch, a number of basic concepts need to be novel. We start this chapter with a discussion of the
principal concepts underlying the Oberon System and of the dominant design decisions. On this
basis, a presentation of the system's structure follows. It will be restricted to its coarsest level,
namely the composition and interdependence of the largest building blocks, the modules. The
chapter ends with an overview of the remainder of the book. It should help the reader to understand
the role, place, and significance of the parts described in the individual chapters.

The fundamental objective of an operating system is to present the computer to the user and to the
programmer at a certain level of abstraction. For example, the store is presented in terms of
requestable pieces or variables of a specified data type, the disk is presented in terms of
sequences of characters (or bytes) called files, the display is presented as rectangular areas called
viewers, the keyboard is presented as an input stream of characters, and the mouse appears as a
pair of coordinates and a set of key states. Every abstraction is characterized by certain properties
and governed by a set of operations. It is the task of the system to implement these operations and
to manage them, constrained by the available resources of the underlying computer. This is
commonly called resource management.

Every abstraction inherently hides details, namely those from which it abstracts. Hiding may occur
at different levels. For example, the computer may allow certain parts of the store, or certain
devices to be made inaccessible according to its mode of operation (user/supervisor mode), or the
programming language may make certain parts inaccessible through a hiding facility inherent in its
visibility rules. The latter is of course much more flexible and powerful, and the former indeed plays
an almost negligible role in our system. Hiding is important because it allows maintenance of
certain properties (called invariants) of an abstraction to be guaranteed. Abstraction is indeed the
key of any modularization, and without modularization every hope of being able to guarantee
reliability and correctness vanishes. Clearly, the Oberon System was designed with the goal of
establishing a modular structure on the basis of purpose-oriented abstractions. The availability of
an appropriate programming language is an indispensable prerequisite, and the importance of its
choice cannot be over-emphasized.

2.2. Concepts

2.2.1. Viewers

Whereas the abstractions of individual variables representing parts of the primary store, and of files
representing parts of the disk store are well established notions and have significance in every
computer system, abstractions regarding input and output devices became important with the
advent of high interactivity between user and computer. High interactivity requires high bandwidth,
and the only channel of human users with high bandwidth is the eye. Consequently, the computer's
visual output unit must be properly matched with the human eye. This occurred with the advent of
the high-resolution display in the mid 1970s, which in turn had become feasible due to faster and
cheaper electronic memory components. The high-resolution display marked one of the few very
significant break-throughs in the history of computer development. The typical bandwidth of a
modern display is in the order of 100 MHz. Primarily the high-resolution display made visual output
a subject of abstraction and resource management. In the Oberon System, the display is partitioned
into viewers, also called windows, or more precisely, into frames, rectangular areas of the
screen(s). A viewer typically consists of two frames, a title bar containing a subject name and a
menu of commands, and a main frame containing some text, graphic, picture, or other object. A
viewer itself is a frame; frames can be nested, in principle to any depth.

 15

The System provides routines for generating a frame (viewer), for moving and for closing it. It
allocates a new viewer at a specified place, and upon request delivers hints as to where it might
best be placed. It keeps track of the set of opened viewers. This is what is called viewer
management, in contrast to the handling of their displayed contents.

But high interactivity requires not only a high bandwidth for visual output, it demands also flexibility
of input. Surely, there is no need for an equally large bandwidth, but a keyboard limited by the
speed of typing to about 100 Hz is not good enough. The break-through on this front was achieved
by the so-called mouse, a pointing device which appeared roughly at the same time as the high-
resolution display.

This was by no means just a lucky coincidence. The mouse comes to fruition only through
appropriate software and the high-resolution display. It is itself a conceptually very simple device
delivering signals when moved on the table. These signals allow the computer to update the
position of a mark - the cursor - on the display. Since feedback occurs through the human eye, no
great precision is required from the mouse. For example, when the user wishes to identify a certain
object on the screen, such as a letter, he moves the mouse as long as required until the mapped
cursor reaches the object. This stands in marked contrast to a digitizer which is supposed to deliver
exact coordinates. The Oberon System relies very much on the availability of a mouse.

Perhaps the cleverest idea was to equip mice with buttons. By being able to signal a request with
the same hand that determines the cursor position, the user obtains the direct impression of issuing
position-dependent requests. Position-dependence is realized in software by delegating
interpretation of the signal to a procedure - a so-called handler or interpreter -which is local to the
viewer in whose area the cursor momentarily appears. A surprising flexibility of command activation
can be achieved in this manner by appropriate software. Various techniques have emerged in this
connection, e.g. pop-up menus, pull-down-menus, etc. which are powerful even under the presence
of a single button only. For many applications, a mouse with several keys is far superior, and the
Oberon System basically assumes three buttons to be available. The assignment of different
functions to the keys may of course easily lead to confusion when every application prescribes
different key assignment. This is, however, easily avoided by the adherence to certain "global"
conventions. In the Oberon System, the left button is primarily used for marking a position (setting a
caret), the middle button for issuing general commands (see below), and the right button for
selecting displayed objects.

Recently, it has become fashionable to use overlapping windows mirroring documents being piled
up on one's desk. We have found this metaphor not entirely convincing. Partially hidden windows
are typically brought to the top and made fully visible before any operation is applied to their
contents. In contrast to the insignificant advantage stands the substantial effort necessary to
implement this scheme. It is a good example of a case where the benefit of a complication is
incommensurate with its cost. Therefore, we have chosen a solution that is much simpler to realize,
yet has no genuine disadvantages compared to overlapping windows: tiled viewers as shown in
Fig. 2.1.

2.2.2. Commands

Position-dependent commands with fixed meaning (fixed for each type of viewer) must be
supplemented by general commands. Conventionally, such commands are issued through the
keyboard by typing the program's name that is to be executed into a special command text. In this
respect, the Oberon System offers a novel and much more flexible solution which is presented in
the following paragraphs.

First of all we remark that a program in the common sense of a text compiled as a unit is mostly a
far too large unit of action to serve as a command. Compare it, for example, with the insertion of a
piece of text through a mouse command. In Oberon, the notion of a unit of action is separated from
the notion of unit of compilation. The former is a command represented by a (exported) procedure,
the latter is a module. Hence, a module may, and typically does, define several, even many
commands. Such a (general) command may be invoked at any time by pointing at its name in any

 16

text visible in any viewer on the display, and by clicking the middle mouse button. The command
name has the form M.P, where P is the procedure's identifier and M that of the module in which P is
declared. As a consequence, any command click may cause the loading of one or several modules,
if M is not already present in main store. The next invocation of M.P occurs instantaneously, since
M is already loaded. A further consequence is that modules are never (automatically) removed,
because a next command may well refer to the same module.

Fig. 2.1. Oberon display with tiled viewers

Every command has the purpose to alter the state of some operands. Typically, they are denoted
by text following the command identification, and Oberon follows this convention. Strictly speaking,
commands are denoted as parameterless procedures; but the system provides a way for the
procedure to identify the text position of its origin, and hence to read and interpret the text following
the command, i.e. the actual parameters. Both reading and interpretation must, however, be
programmed explicitly.

The parameter text must refer to objects that exist before command execution starts and are quite
likely the result of a previous command interpretation. In most operating systems, these objects are
files registered in the directory, and they act as interfaces between commands. The Oberon System
broadens this notion; the links between consecutive commands are not restricted to files, but can
be any global variable, because modules do not disappear from storage after command
termination, as mentioned above.

This tremendous flexibility seems to open Pandora's box, and indeed it does when misused. The
reason is that global variables' states may completely determine and alter the effect of a command.
The variables represent hidden states, hidden in the sense that the user is in general unaware of
them and has no easy way to determine their value. The positive aspect of using global variables
as interfaces between commands is that some of them may well be visible on the display. All
viewers - and with them also their contents - are organized in a data structure that is rooted in a
global variable (in module Viewers). Parts of this variable therefore constitute visible states, and it is
highly appropriate to refer to them as command parameters.

One of the rules of what may be called the Oberon Programming Style is therefore to avoid hidden
states, and to reduce the introduction of global variables. We do not, however, raise this rule to the

 17

rank of a dogma. There exist genuinely useful exceptions, even if the variables have no visible
parts.

There remains the question of how to denote visible objects as command parameters. An obvious
case is the use of the most recent selection as parameter. A procedure for locating that selection is
provided by module Oberon. (It is restricted to text selections). Another possibility is the use of the
caret position in a text. This is used in the case of inserting new text; the pressing of a key on the
keyboard is also considered to be a command, and it causes the character's insertion at the caret
position.

A special facility is introduced for designating viewers as operands: the star marker. It is placed at
the cursor position when the keyboard's mark key (SETUP) is pressed. The procedure
Oberon.MarkedViewer identifies the viewer in whose area the star lies. Commands which take it as
their parameter are typically followed by an asterisk in the text. Whether the text contained in a text
viewer, or a graph contained in a graphic viewer, or any other part of the marked viewer is taken as
the actual parameter depends on how the command procedure is programmed.

Finally, a most welcome property of the system should not remain unmentioned. It is a direct
consequence of the persistent nature of global variables and becomes manifest when a command
fails. Detected failures result in a trap. Such a trap should be regarded as an abnormal command
termination. In the worst case, global data may be left in an inconsistent state, but they are not lost,
and a next command can be initiated based on their current state. A trap opens a small viewer and
lists the sequence of invoked procedures with their local variables and current values. This
information helps a programmer to identify the cause of the trap.

2.2.3. Tasks

From the presentations above it follows that the Oberon System is distinguished by a highly flexible
scheme of command activation. The notion of a command extends from the insertion of a single
character and the setting of a marker to computations that may take hours or days. It is moreover
distinguished by a highly flexible notion of operand selection not restricted to registered, named
files. And most importantly, by the virtual absence of hidden states. The state of the system is
practically determined by what is visible to the user.

This makes it unnecessary to remember a long history of previously activated commands, started
programs, entered modes, etc. Modes are in our view the hallmark of user-unfriendly systems. It
should at this point have become obvious that the system allows a user to pursue several different
tasks concurrently. They are manifest in the form of viewers containing texts, graphics, or other
displayable objects. The user switches between tasks implicitly when choosing a different viewer as
operand for the next command. The characteristic of this concept is that task switching is under
explicit control of the user, and the atomic units of action are the commands.

At the same time, we classify Oberon as a single-process (or single-thread) system. How is this
apparent paradox to be understood? Perhaps it is best explained by considering the basic mode of
operation. Unless engaged in the interpretation of a command, the processor is engaged in a loop
continuously polling event sources. This loop is called the central loop; it is contained in module
Oberon which may be regarded as the system's heart. The two fixed event sources are the mouse
and the keyboard. If a keyboard event is sensed, control is dispatched to the handler installed in the
so-called focus viewer, designated as the one holding the caret. If a mouse event (key) is sensed,
control is dispatched to the handler in which the cursor currently lies. This is all possible under the
paradigm of a single, uninterruptible process.

The notion of a single process implies non-interruptability, and therefore also that commands
cannot interact with the user. Interaction is confined to the selection of commands before their
execution. Hence, there exists no input statement in typical Oberon programs. Inputs are given by
parameters supplied and designated before command invocation.

This scheme at first appears as gravely restrictive. In practice it is not, if one considers single-user
operation. It is this single user who carries out a dialog with the computer. A human might be
capable of engaging in simultaneous dialogs with several processes only if the commands issued

 18

are very time-consuming. We suggest that execution of time-consuming computations might better
be delegated to loosely coupled compute-servers in a distributed system.

The primary advantage of a system dealing with a single process is that task switches occur at
user-defined points only, where no local process state has to be preserved until resumption.
Furthermore, because the switches are user-chosen, the tasks cannot interfere in unexpected and
uncontrollable ways by accessing common variables. The system designer can therefore omit all
kinds of protection mechanisms that exclude such interference. This is a significant simplification.

The essential difference between Oberon and multiprocess-systems is that in the former task
switches occur between commands only, whereas in the latter a switch may be invoked after any
single instruction. Evidently, the difference is one of granularity of action. Oberon's granularity is
coarse, which is entirely acceptable for a single-user system.

The system offers the possibility to insert further polling commands in the central loop. This is
necessary if additional event sources are to be introduced. The prominent example is a network,
where commands may be sent from other workstations. The central loop scans a list of so-called
task descriptors. Each descriptor refers to a command procedure. The two standard events are
selected only if their guard permits, i.e. if either keyboard input is present, or if a mouse event
occurs. Inserted tasks must provide their own guard in the beginning of the installed procedure.

The example of a network inserting commands, called requests, raises a question: what happens if
the processor is engaged in the execution of another command when the request arrives?
Evidently, the request would be lost unless measures are taken. The problem is easily remedied by
buffering the input. This is done in every driver of an input device, in the keyboard driver as well as
the network driver. The incoming signal triggers an interrupt, and the invoked interrupt handler
accepts the input and buffers it. We emphasize that such interrupt handling is confined to drivers,
system components at the lowest level. An interrupt does not evoke a task selection and a task
switch. Control simply returns to the point of interruption, and the interrupt remains unnoticeable to
programs. There exists, as with every rule, an exception: an interrupt due to keyboard input of the
abort character returns control to the central loop.

2.2.4. Tool Texts as Configurable Menus

Certainly, the concepts of viewers specifying their own interpretation of mouse clicks, of commands
invokable from any text on the display, of any displayed object being selectable as an interface
between commands, and of commands being dialog-free, uninterruptible units of action, have
considerable influence on the style of programming in Oberon, and they thoroughly change the
style of using the computer. The ease and flexibility in the way pieces of text can be selected,
moved, copied, and designated as command and as command parameters, drastically reduces the
need for typing. The mouse becomes the dominant input device: the keyboard merely serves to
input textual data. This is accentuated by the use of so-called tool texts, compositions of frequently
used commands, which are typically displayed in the narrower system track of viewers. One simply
doesn't type commands! They are usually visible somewhere already. Typically, the user composes
a tool text for every project pursued. Tool texts can be regarded as individually configurable private
menus.

The rarity of issuing commands by typing them has the most agreeable benefit that their names can
be meaningful words. For example, the copy operation is denoted by Copy instead of cp, rename
by Rename instead of rn, the call for a file directory excerpt is named Directory instead of ls. The
need for memorizing an infinite list of cryptic abbreviations, which is another hallmark of user-
unfriendly systems, vanishes.

But the influence of the Oberon concept is not restricted to the style in which the computer is used.
It extends also to the way programs are designed to communicate with the environment. The
definition of the abstract type Text in the system's core suggests the replacement of files by texts as
carrier of input and output data in very many cases. The advantage to be gained lies in the text's
immediate editability. For example, the output of the command System.Directory produces the

 19

desired excerpt of the file directory in the form of a (displayed) text. Parts of it or the whole may be
selected and copied into other texts by regular editing commands (mouse clicks). Or, the compiler
accepts texts as input. It is therefore possible to compile a text, execute the program, and to
recompile the re-edited text without storing it on disk between compilations and tests. The
ubiquitous editability of text together with the persistence of global data (in particular viewers)
allows many steps that do not contribute to the progress of the task actually pursued to be avoided.

2.2.5. Extensibility

An important objective in the design of the Oberon System was extensibility. It should be easy to
extend the system with new facilities by adding modules that make use of the already existing
resources. Equally important, it should also reduce the system to those facilities that are currently
and actually used. For example, a document editor processing documents free of graphics should
not require the loading of an extensive graphics editor, a workstation operating as a stand-alone
system should not require the loading of extensive network software, and a system used for clerical
purposes need include neither compiler nor assembler. Also, a system introducing a new kind of
display frame should not include procedures for managing viewers containing such frames. Instead,
it should make use of existing viewer management. The staggering consumption of memory space
by many widely used systems is due to violation of such fundamental rules of engineering. The
requirement of many megabytes of store for an operating system is, albeit commonly tolerated,
absurd and another hallmark of user-unfriendliness, or perhaps manufacturer friendliness. Its
reason is none other than inadequate extensibility.

We do not restrict this notion to procedural extensibility, which is easy to realize. The important
point is that extensions may not only add further procedures and functions, but introduce their own
data types built on the basis of those provided by the system: data extensibility. For example, a
graphics system should be able to define its graphics frames based on frames provided by the
basic display module and by extending them with attributes appropriate for graphics.

This requires an adequate language feature. The language Oberon provides precisely this facility in
the form of type extensions. The language was designed for this reason; Modula-2 would have
been the choice, had it not been for the lack of a type extension feature. Its influence on system
structure was profound, and the results have been most encouraging. In the meantime, many
additions have been created with surprising ease. One of them is described at the end of this book.
The basic system is nevertheless quite modest in its resource requirements (see Table at the end
of Section 2.3).

2.2.6. Dynamic Loading

Activation of commands residing in modules that are not present in the store implies the loading of
the modules and, of course, all their imports. Invoking the loader is, however, not restricted to
command activation; it may also occur through programmed procedure calls. This facility is
indispensable for a successful realization of genuine extensibility. Modules must be loadable on
demand. For example, a document editor loads a graphics package when a graphic element
appears in the processed document, but not otherwise.

The Oberon System features no separate linker. A module is linked with its imports when it is
loaded, and never before. As a consequence, every module is present only once, in main store
(linked) as well as on backing store (unlinked, as file). Avoiding the generation of multiple copies in
different, linked object files is the key to storage economy. Prelinked mega-files do not occur in the
Oberon System, and every module is freely reusable.

2.3. The system's structure
The largest identifiable units of the system are its modules. It is therefore most appropriate to
describe a system's structure in terms of its modules. As their interfaces are explicitly declared, it is
also easy to exhibit their interdependence in the form of a directed graph. The edges indicate
imports.

 20

The module graph of a system programmed in Oberon is hierarchical, i.e. has no cycles. The
lowest members of the hierarchy effectively import hardware only. We refer here to modules which
contain device drivers. But module Kernel also belongs to this class; it "imports memory" and
includes the disk driver. The modules on the top of the hierarchy effectively export to the user. As
the user has direct access to command procedures, we call these top members command modules
or tool modules.

The hierarchy of the basic system is shown in a table of direct imports and as a graph in Figure 2.2.
The picture is simplified by omitting direct import edges if an indirect path also leads from the
source to the destination. For example, Files imports Kernel; the direct import is not shown,
because a path from Kernel leads to Files via FileDir.

 Text- Menu- Ober- Texts Fonts Input View Disp Modul Files FileDir Kernel
 Frame View on

System x x x x x x x x x x x x
Edit x x x x x
TextFrames x x x x x x x x
MenuViewers x x x x
Oberon x x x x x x x
Texts x x
Fonts x
Viewers x
Display
Modules x x
Files x x
FileDir x

Fig. 2.2. The structure of the Oberon core

Module names in the plural form typically indicate the definition of an abstract data type in the
module. The type is exported together with the pertinent operations. Examples are Files, Modules,
Fonts, Texts, Viewers, MenuViewers, and TextFrames. Modules whose names are in singular form

System

TextFrame

MenuView

Oberon

Viewers Texts

Modules

Files

FileDir

Kernel

Display Fonts

Input

 21

typically denote a resource that the module manages, be it a global variable or a device. The
variable or the device is itself hidden (not exported) and becomes accessible through the module's
exported procedures. Examples are all device drivers, Input for keyboard and mouse, Kernel for
memory and disk, and Display. Exceptions are the command modules whose name is mostly
chosen according to the activity they primarily represent, like System, and Edit

Module Oberon is, as already mentioned, the heart of the system containing the central loop to
which control returns after each command interpretation, independent of whether it terminates
normally or abnormally. Oberon exports several procedures of auxiliary nature, but primarily also
the one allowing the invocation of commands (Call) and access to the command's parameter text
through variable Oberon.Par. Furthermore, it contains global, exported variables: the log text. The
log text typically serves to issue prompts and short failure reports of commands. The text is
displayed in a log viewer that is automatically opened when module System is initialized. Module
Oberon furthermore contains the two markers used globally on the display, the mouse cursor and
the star pointer. It exports procedures to draw and to erase them, and allows the installation of
different patterns for them.

The system shown in Fig. 2.2. basically contains facilities for generating and editing texts, and for
storing them in the file system. All other functions are performed by modules that must be added in
the usual way by module loading on demand. This includes, notably, the compiler, network
communication, document editors, and all sorts of programs designed by users. The high priority
given in the system's conception to modularity, to avoiding unnecessary frills, and to concentrate on
the indispensable in the core, has resulted in a system of remarkable compactness. Although this
property may be regarded as of little importance in this era of falling costs of large memories, we
consider it to be highly essential. We merely should like to draw the reader's attention to the
correlation between a systems' size and its reliability. Also, we do not consider it as good
engineering practice to consume a resource lavishly just because it happens to be cheap. The
following table lists the core's modules and the major application modules, and it indicates the size
of code (in words) and static variables (in bytes) and, the number of source program lines.

module code data lines

Kernel 1123 8244 263
FileDir 1963 60 352
Files 2360 148 505
Modules 1214 112 226
Input 186 32 79
Fonts 628 56 115
Display 1033 84 190
Viewers 1324 104 206
Texts 2906 204 537
Oberon 1679 288 410
MenuViewers 1513 56 208
TextFrames 5786 292 874
System 2134 72 418
Edit 1096 1104 232
 24945 10856 4615
ORS 1762 992 319
ORB 2348 408 437
ORG 6699 34976 1125
ORP 5994 144 974
 16803 36520 2855
Graphics 3484 564 685
GraphicFrames 2832 288 498
Draw 690 40 164
Rectangles 649 40 118
Curves 1765 72 241
 9420 1004 1706

 22

2.4. A tour through the chapters
Implementation of a system proceeds bottom-up. Naturally, because modules on higher levels are
clients of those on the lower levels and cannot function without the availability of their imports.
Description of a system, on the other hand, is better ordered in the top-down direction. This is
because a system is designed with its expected applications and functions in mind. Decomposition
into a hierarchy of modules is justified by the use of auxiliary functions and abstractions and by
postponing their more detailed explanation to a later time when their need has been fully motivated.
For this reason, we will proceed essentially in the top-down direction.

Chapters 3 - 5 describe the outer core of the system. Chapter 3 focusses on the dynamic aspects.
In particular, this chapter introduces the fundamental operational units of task and command.
Oberon's tasking model distinguishes the categories of interactive tasks and background tasks.
Interactive tasks are represented on the display screen by rectangular areas, so-called viewers.
Background tasks need not be connected with any displayed object. They are scheduled with low
priority when interactions are absent. A good example of a background task is the memory garbage
collector. Both interactive tasks and background tasks are mapped to a single process by the task
scheduler. Commands in Oberon are explicit, atomic units of interactive operations. They are
realized in the form of exported parameterless procedures and replace the heavier-weight notion of
program known from more conventional operating systems. This chapter continues with a definition
of a software toolbox as a logically connected collection of commands. It terminates with an outline
of the system control toolbox.

Chapter 4 explains Oberon's display system. It starts with a discussion of our choice of a
hierarchical tiling strategy for the allocation of viewers. A detailed study of the exact role of Oberon
viewers follows. Type Viewer is presented as an object class with an open message interface
providing a conceptual basis for far-reaching extensibility. Viewers are then recognized as just a
special case of so-called frames that may be nested. A category of standard viewers containing a
menu frame and a frame of contents is investigated. The next topic is cursor handling. A cursor in
Oberon is a marked path. Both viewer manager and cursor handler operate on an abstract logical
display area rather than on individual physical monitors. This allows a unified handling of display
requests, independent of number and types of monitors assigned. For example, smooth transitions
of the cursor across screen boundaries are conceptually guaranteed. The chapter continues with
the presentation of a concise and complete set of raster operations that is used to place textual and
graphical elements in the display area. An overview of the system display toolbox concludes the
chapter.

Chapter 5 introduces text. Oberon distinguishes itself by treating Text as an abstract data type that
is integrated in the central system. Numerous fundamental consequences are discussed. For
example, a text can be produced by one command, edited by a user, and then consumed by a next
command. Commands themselves can be represented textually in the form M.P, followed by a
textual parameter list. Consequently, any command can be called directly from within a text (so-
called tool) simply by pointing at it with the mouse. However, the core of this chapter is a
presentation of Oberon's text system as a case study in program modularization. The concerns of
managing a text and displaying it are nicely separated. Both the text manager and the text display
feature an abstract public interface as well as an internally hidden data structure. Finally in this
chapter, Oberon's type-font management and the toolbox for editing are discussed.

Chapters 6 - 9 describe the inner core, still in a top-down path. Chapter 6 explains the loader of
program modules and motivates the introduction of the data type Module. The chapter includes the
management of the memory part holding program code and defines the format in which compiled
modules are stored as object files. Furthermore, it discusses the problems of binding separately
compiled modules together and of referencing objects defined in other modules.

Chapter 7 is devoted to the file system, a part of crucial importance, because files are involved in
almost every program and computation. The chapter consist of two distinct parts, the first
introducing the type File and describing the structure of files, i.e. their representation on disk
storage with its sequential characteristics, the second describing the directory of file names and its
organisation as a B-tree for obtaining fast searches.

 23

The management of memory is the subject of Chapter 8. A single, central storage management
was one of the key design decisions, guaranteeing an efficient and economical use of storage. The
chapter explains the store's partitioning into specific areas. Its central concern, however, is the
discussion of dynamic storage management in the partition called the heap. The algorithm for
allocation (corresponding to the intrinsic procedure NEW) and for retrieval (called garbage
collection) are explained in detail.

At the lowest level of the module hierarchy we find device drivers. They are described in Chapter 9,
which contains drivers for some widely accepted interface standards. The first is PS-2, a serial
transmission with synchronous clock. This is used for the keyboard and for the Mouse. The second
is SPI, a standard for bi-directional, serial transmission with synchronous clock. This is used for the
"disk", represented by an SDI-card (flash memory), and for the network. And the third standard is
RS-232 typically used for simple and slow data links. It is bidirectional and asynchronous.

The second part of the book, consisting of Chapters 10 - 15, is devoted to what may be called first
applications of the basic Oberon System. These chapters are therefore independent of each other,
making reference to Chapters 3 - 9 only.

Although the Oberon System is well-suited for operating stand-alone workstations, a facility for
connecting a set of computers should be considered as fundamental. Module Net, which makes
transmission of files among workstations connected by a bus-like network possible, is the subject of
Chapter 10. It presents not only the problems of network access, of transmission failures and
collisions, but also those of naming partners. The solutions are implemented in a surprisingly
compact module which uses a network driver presented in Chapter 9.

When a set of workstations is connected in a network, the desire for a central server appears. A
central facility serving as a file distribution service, as a printing station, and as a storage for
electronic mail is presented in Chapter 11. It emerges by extending the Net module of Chapter 10,
and is a convincing application of the tasking facilities explained in Section 2.2. In passing we note
that the server operates on a machine that is not under observation by a user. This circumstance
requires an increased degree of robustness, not only against transmission failures, but also against
data that do not conform to defined formats.

The presented system of servers demonstrates that Oberon's single-thread scheme need not be
restricted to single-user systems. The fact that every command or request, once accepted, is
processed until completion, is acceptable if the request does not occupy the processor for too long,
which is mostly the case in the presented server applications. Requests arriving when the
processor is engaged are queued. Hence, the processor handles requests one at a time instead of
interleaving them which, in general, results in faster overall performance due to the absence of
frequent task switching.

Chapter 12 describes the Oberon compiler. It translates source text in Oberon into target code, i.e.
instruction sequences of some target computer. Its principles and techniques are explained in [6].
Both, source language and target architecture must be understood before studying a compiler. Both
source language and the target computer's RISC architecture are presented in the Appendix.

Although here the compiler appears as an application module, it naturally plays a distinguished role,
because the system (and the compiler itself) is formulated in the language which the compiler
translates into code. Together with the text editor it was the principal tool in the system's
development. The use of straight-forward algorithms for parsing and symbol table organization led
to a reasonably compact piece of software. A main contributor to this result is the language's
definition: the language is devoid of complicated structures and rarely used embellishments.

The compiler and thereby the chapter is partitioned into two main parts. The first is language-
specific, but does not refer to any particular target computer. It consist of the scanner and the
parser. This part is therefore of most general interest to the readership. The second part is,
essentially, language-independent, but is specifically tailored to the instruction set of the target
computer. It is called the code generator.

 24

Texts play a predominant role in the Oberon System. Their preparation is supported by the
system's major tool, the editor. In Chapter 13 we describe another editor, one that handles graphic
objects. At first, only horizontal and vertical lines and short captions are introduced as objects. The
major difference to texts lies in the fact that their coordinates in the drawing plane do not follow from
those of their predecessor automatically, because they form a set rather than a sequence. Each
object carries its own, independent coordinates. The influence of this seemingly small difference
upon an editor are far-reaching and permeate the entire design. There exist hardly any similarities
between a text and a graphics editor. Perhaps one should be mentioned: the partitioning into three
parts. The bottom module defines the respective abstract data structure for texts or graphics,
together with, of course, the procedures handling the structure, such as searches, insertions, and
deletions. The middle module in the hierarchy defines a respective frame and contains all
procedures concerned with displaying the respective objects including the frame handler defining
interpretation of mouse and keyboard events. The top modules are the respective tool modules
(Edit, Draw). The presented graphics editor is particularly interesting in so far as it constitutes a
convincing example of Oberon's extensibility. The graphics editor is integrated into the entire
system; it embeds its graphic frames into menu-viewers and uses the facilities of the text system for
its caption elements. And lastly, new kinds of elements can be incorporated by the mere addition of
new modules, i.e. without expanding, even without recompiling the existing ones. Two examples
are shown in Chapter 13 itself: rectangles and circles.

The Draw System has been extensively used for the preparation of diagrams of electronic circuits.
This application suggests a concept that is useful elsewhere too, namely a recursive definition of
the notion of object. A set of objects may be regarded as an object itself and be given a name.
Such an object is called a macro. It is a challenge to the designer to implement a macro facility
such that it is also extensible, i.e. in no way refers to the type of its elements, not even in its input
operations of files on which macros are stored.

Chapter 14 presents two other tools, namely one used for installing an Oberon System on a bare
machine, and one used to recover from failures of the file store. Although rarely employed, the first
was indispensable for the development of the system. The maintenance or recovery tools are
invaluable assets when failures occur. And they do! Chapter 14 covers material that is rarely
presented in the literature.

Chapter 15 is devoted to tools that are not used by the Oberon System presented so far, but may
be essential in some applications. The first is a data link with a protocol based on the RS-232
standard shown in Chapter 9. Another is a standard set of basic mathematical functions. And the
third is a tool for creating new macros for the Draw System.

The third part of this book is devoted to a detailed description of the hardware. Chapter 16 defines
the processor, for which the compiler generates code. The target computer is a truly simple and
regular processor called RISC with only 14 instructions, represented not by a commercial
processor, but implemented with an FPGA, a Field Programmable Gate Array. It allows its
structure to be described in full detail. It is a straight-forward, von Neumann type device consisting
of a register bank, an arithmetic-logic unit, including a floating-point unit. Typical optimization
facilities, like pipelining and cache memory, have been omitted for the sake of transparency and
simplicity. The processor circuit is described in the language Verilog.

Chapter 17 describes the environment in which the processor is embedded. This environment
consists of the interfaces to main memory and to all external devices.

References
1. N. Wirth. The programming language Oberon. Software - Practice and Experience 18, 7, (July

1988) 671-690.

2. M. Reiser and N. Wirth. Programming in Oberon - Steps beyond Pascal and Modula. Addison-
Wesley, 1992. ISBN 0-201-56543-9

 25

3. N. Wirth and J. Gutknecht. The Oberon System. Software - Practice and Experience, 19, 9 (Sept.
1989), 857-893.

4. N. Wirth. Ceres-Net: A low-cost computer network. Software - Practice and Experience, 20, 1
(Jan. 1990), 13-24.

5. M. Reiser. The Oberon System - User Guide and Programmer's Manual. Addison-Wesley, 1991.
ISBN 0-201-54422-9

6. N. Wirth. Compiler Construction. Addison-Wesley, Reading, 1996. ISBN 0-201-40353-6

 26

3 The tasking system
Eventually, it is the generic ability to perform every conceivable task that turns a computing device
into a versatile universal tool. Consequently, the issues of modeling and orchestrating of tasks are
fundamental in the design of any operating system. Of course, we cannot expect a single fixed
tasking metaphor to be the ideal solution for all possible kinds of systems and modes of use. For
example, different metaphors are probably appropriate in the cases of a closed mainframe system
serving a large set of users in time-sharing mode on the one hand, and of a personal workstation
that is operated by a single user at a high degree of interactivity on the other hand.

 In the case of Oberon, we have consciously concentrated on the domain of personal
workstations. More precisely, we have directed Oberon's tasking facilities towards a single-user
interactive personal workstation that is possibly integrated into a local area network.

We start the presentation in Section 3.1 with a clarification of the technical notion of task. In
Section 3.2, we continue with a detailed explanation of the scheduling strategy. Then, in Section
3.3, we introduce the concept of command. And finally, Section 3.4 provides an overview of
predefined system-oriented toolboxes, i. e. coherent collections of commands devoted to some
specific topic. Example topics are system control and diagnosis, display management, and file
management.

3.1. The concept of Task
In principle, we distinguish two categories of tasks in Oberon: Interactive tasks and background
tasks. Loosely speaking, interactive tasks are bound to local regions on the display screen and to
interactions with their contents while, in contrast, background tasks are system-wide and not
necessarily related to any specific displayed entity.

3.1.1. Interactive tasks

Every interactive task is represented by a so-called viewer. Viewers constitute the interface to
Oberon's display-system. They embody a variety of roles that are collected in an abstract data
type Viewer. We shall give a deeper insight into the display system in Chapter 4. For the moment
it suffices to know that viewers are represented graphically as rectangles on the display screen
and that they are implicit carriers of interactive tasks. Figure 3.1 shows a typical Oberon display
screen that is divided up into seven viewers corresponding to seven simultaneously active
interactive tasks.

In order to get firmer ground under our feet, we now present the programmed declaration of type
Viewer in a slightly abstracted form:

Viewer = POINTER TO ViewerDesc;

ViewerDesc = RECORD
 X, Y, W, H: INTEGER;
 handle: Handler;
 state: INTEGER
 END;

X, Y, W, H define the viewer's rectangle on the screen, i.e. location X, Y of the lower left corner
relative to the display origin, width W and height H. The variable state informs about the current
state of visibility (visible, closed, covered), while handle represents the functional interface of
viewers. The type of the handler is

Handler = PROCEDURE (V: Viewer; VAR M: ViewerMsg);

where ViewerMsg is some base type of messages whose exact declaration is of minor importance
for the moment:

ViewerMsg = RECORD ... (*basic parameter fields*) END;

 27

Figure 3.1 Typical Oberon display configuration with tool track on the right

However, we should point out the use of object-oriented terminology. It is justified because handle
is a procedure variable (a handler) whose identity depends on the specific viewer. A call
V.handle(V, M) can therefore be interpreted as the sending of a message M to be handled by the
method of the receiving viewer V.

We recognize an important difference between the standard object-oriented model and our
handler paradigm. The standard model is closed in the sense that only a fixed set of messages is
understood by a given class of objects. In contrast, the handler paradigm is open because it
defines just the root (ViewerMsg) of a potentially unlimited tree of extending message types. For
example, a concrete handler might be able to handle messages of type MyViewerMsg, where

MyViewerMsg = RECORD (ViewerMsg)
 mypar: MyParameters
END;

is an extended type of ViewerMsg.

It is worth noting that our open object-oriented model is extremely flexible. Notably, extending the
set of message types that are handled by an object is a mere implementation issue, that is, it has
no effect at all on the object’s compile-time interface and on the system integrity. It is fair to
mention though that such a high degree of extensibility does not come for free. The price to pay is
the obligation of explicit message dispatching at runtime. The following Chapters will capitalize on
this property.

Coming back to the perspective of tasks, we note that each sending of a message to a viewer
corresponds to an activation or reactivation of the interactive task that it represents.

 28

3.1.2. Background Tasks

Oberon background tasks are not connected a priori with any specific aggregate in the system.
Seen technically, they are instances of an abstract data type consisting of type declarations Task
and TaskDesc together with intrinsic operations NewTask, Install and Remove:

Task = POINTER TO TaskDesc;
TaskDesc = RECORD state: INTEGER; handle: PROCEDURE END;

PROCEDURE NewTask(h: PROCEDURE; period: INTEGER): Task;
PROCEDURE Install (T: Task);
PROCEDURE Remove (T: Task);

The procedures Install and Remove are called explicitly in order to transfer the state of the
specified task from offline to idle and from idle to offline respectively. Installed tasks take their
turns in becoming active, that is, in being executed. The installed handlers are simple,
parameterless procedures specifying their own actions and conditions for execution, with one
exception: Resumption may be delayed until a certain period of time has elapsed. This period is
specified in milliseconds when a task is created.

The following two examples of concrete background tasks may serve a better understanding of
our explanations. The first one is a system-wide garbage collector collecting unused memory. The
second example is a network monitor accepting incoming data on a local area network. In both
examples the state of the task is captured entirely by global system variables. We shall come back
to these topics in Chapters 8 and 10 respectively.

We should not end this Section without drawing an important conclusion. Transfers of control
between tasks are implemented in Oberon as ordinary calls and returns of ordinary procedures
(procedure variables, actually). Preemption is not possible. From that we conclude that active
periods of tasks are sequentially ordered and can be controlled by a single thread of control. This
simplification pays well: Locks of common resources are completely dispensable and deadlocks
are not a topic.

3.2. The task scheduler
We start from the general assumption that, at any given time, a number of well-determined tasks
are ready in the system to be serviced. Remember that two categories of tasks exist: Interactive
tasks and background tasks. They differ substantially in the criteria of activation or reactivation
and in the priority of dispatching. Interactive tasks are (re)activated exclusively upon interactions
by the user and are dispatched with high priority. In contrast, background tasks are polled with low
priority.

We already know that interactive tasks are activated by sending messages. The types of
messages used for this purpose are InputMsg and ControlMsg reporting keyboard events and
mouse events respectively. Slightly simplified, they are declared as

InputMsg = RECORD (ViewerMsg)
 id: INTEGER;
 X, Y: INTEGER;
 keys: SET;
 ch: CHAR
END;

ControlMsg = RECORD (ViewerMsg)
 id: INTEGER;
 X, Y: INTEGER
END;

The field id specifies the exact request transmitted with this specific reactivation. In the case of
InputMsg the possible requests are consume (the character specified by field ch) and track
(mouse, starting from state given by keys and X, Y). In case of ControlMsg the choice is mark (the
viewer at position X, Y) or neutralize. Mark means moving the global system pointer (typically

 29

represented as a star-shaped mark) to the current position of the mouse. Neutralizing a viewer is
equivalent to removing all marks and graphical attributes from this viewer.

All tasking facilities are collected in one program module, called Oberon. In particular, the
module's definition exposes the declarations of the abstract data type Task and of the message
types InputMsg and ControlMsg. The module's most important contribution, however, is the task
scheduler (often referred to as “Oberon loop”) that can be regarded as the system's dynamic
center.

Before studying the scheduler in detail we need some more preparation. We start with the
institution of the focus viewer. By definition, this is a distinguished viewer that by convention
consumes subsequent keyboard input. Note that we identify the focus viewer with the focus task,
hereby making use of the one-to-one correspondence between viewers and tasks.

Module Oberon provides the following facilities in connection with the focus viewer: A global
variable FocusViewer, a procedure PassFocus for transferring the role of focus to a new viewer,
and a defocus variant of ControlMsg for notifying the old focus viewer of such a transfer.

The implementation details of the abstract data type Task are hidden from the clients. It is
sufficient to know that all task descriptors are organized in a ring and that a pointer points to the
previously activated task. The ring is guaranteed never to be empty because the above mentioned
garbage collector is installed as a permanent sentinel task at system loading time.

The following is a slightly abstracted version of the actual scheduler code operating on the task
ring. It should be associated with procedure Loop in the module Oberon.

 get mouse position and state of keys;
 REPEAT
 IF keyboard input available THEN read character
 IF character is escape THEN
 broadcast neutralize message to viewers
 ELSIF character is mark THEN
 send mark message to viewer containing mouse
 ELSE send consume message to focus viewer
 END;
 get mouse position and state of keys
 ELSIF at least one key pressed THEN
 REPEAT
 send track message to viewer containing mouse;
 get mouse position and state of keys
 UNTIL all keys released
 ELSE (*no key pressed*)
 send track message to viewer containing mouse;
 take next task in ring as current task;
 call its handler (if specified time period has elapsed)
 get mouse position and state of keys
 END
 UNTIL FALSE

The system executes a sequence of uninterrupted procedures (tasks). Interactive tasks are
triggered by input data being present, either from the keyboard, the mouse, or other input sources.
Background tasks are taken up in a round-robin manner. Interactive tasks have priority.

Having consciously excluded exceptional program behavior in our explanations so far, some
comments about the way of runtime continuation in the case of a failing task or, in other words, in
the case of a trap are in order here. On the (abstract) level of tasks, we can identify three
sequential actions of recovery taken after a program failure:

 recovery after program failure =

 30

 BEGIN save current system state;
 call installed trap handler;
 roll back to start of task scheduler
 END

Essentially, the system state is determined by the values of all global and local variables at a
given time. The trap handler typically opens an extra viewer displaying the cause of the trap and
the saved system state. Notice in the program fragment above that background tasks are
removed from the ring after failing. This is an effective precaution against cascades of repeated
failures. Obviously, no such precaution is necessary in the case of interactive tasks because their
reactivation is under control of the user of the system.

Summarizing the essence of the tasking system: Oberon is a multitasking system based on a two-
category model. Interactive tasks are interfacing with the display system and are scheduled with
high priority upon user interactions. Background tasks are stand-alone and are scheduled with low
priority. Task activations are modeled as message passing and eventually as calls of procedures
assigned to variables. They are sequentially ordered and controlled by a single thread of control.

3.3. The concept of command
An operating system constitutes a general purpose platform on which application software
packages can build upon. To software designers the platform appears as interface to "the system"
and (in particular) to the underlying hardware. Unfortunately, interfaces defined by conventional
operating systems often suffer from an all too primitive access mechanism that is based solely on
the concept of "software interrupt" or "supervisor call" and on files taking the role of “connecting
pipes". The situation is especially ironic when compared with the development of high-level
programming languages towards extreme abstraction.

We have put greatest emphasis in Oberon on closing the semantic gap between application
software packages and the system platform. The result of our efforts is a highly expressive and
consistent application programming interface (API) in the form of an explicit hierarchy of module
definitions. Perhaps the most significant and most notable outcome of this approach is a collection
of very powerful and system-wide abstract data types like Task, Frame, Viewer, File, Font, Text,
Module, Reader, Scanner, Writer etc..

3.3.1. Atomic actions

The most important generic function of any operating system is executing programs. A clarification
of the term program as it is used in Oberon comprises two views: a static one and a dynamic one.
Statically, an Oberon program is simply a package of software together with an entry point. More
formally, an Oberon program is a pair (M*, P), where M is an arbitrary module, P is an exported
parameterless procedure of M, and M* denotes the hierarchy consisting of M itself and of all
directly and indirectly imported modules. Note that two hierarchies M* and N* are not generally
disjoint, even if M and N are different modules. Rather, their intersection is a superset of the
operating system.

Viewed dynamically, an Oberon program is defined as an atomic action (often called command)
operating on the global system state, where atomic means "without user interaction". This
definition is just a necessary consequence of our model of non-preemptive task scheduling with
the benefit of a single carrier thread. We can argue like this: When a traditional interactive
program requires input from the user, , the current task is normally preempted in favor of another
task that produces the required input data. Therefore, a traditional interactive program can be
viewed as a sequence of atomic actions interrupted by actions that possibly belong to other
programs. Whereas in traditional systems these interruptions may occur at any time, in Oberon
they can occur only after the completion of a task, of a command.

Quintessentially, Oberon programs are represented in the form of commands that are in the form
of exported parameterless procedures that do not interact with the user of the system.

 31

Returning to the calling and execution of programs we now arrive at the following refined code
version:

 call program (M*, P) = BEGIN
 load module hierarchy M*; call command P
 END

The system interface to the command mechanism itself is again provided by module Oberon. Its
primary operation can be paraphrased as "call a command by its name and pass a list of actual
parameters":

PROCEDURE Call (name: ARRAY OF CHAR; par: ParList; VAR res: INTEGER);

name is the name of the desired command in the form M.P, par is the list of actual parameters,
and res is a result code. But in fact we have separated the setting of parameters from the actual
call. Parameters are set by calling

PROCEDURE SetPar (F: Display.Frame; T: Texts.Text; pos: INTEGER);

and the actual call is achieved by calling

PROCEDURE Call (name: ARRAY OF CHAR; VAR res: INTEGER);

The pair (T, pos) specifies the starting position of a textual parameter list. F indicates the calling
viewer. Notice the occurrence of yet another abstract data type of name Text that is exported by
module Texts. We shall devote Chapter 5 to a thorough discussion of Oberon's text system. For
the moment we can simply look at a text as a sequence of characters.

The list of actual parameters is handed over to the called command by module Oberon in the form
of an exported global variable Par:

 Par: RECORD vwr: Viewers.Viewer;
 frame: Display.Frame;
 text: Texts.Text;
 pos: INTEGER
 END

In principle, commands operate on the entire system and can access the current global state via
the system's powerful abstract modular interface, of which the list of actual parameters is just one
component. Another one is the so-called system log which is a system-wide protocol reporting on
the progress of command execution and on exceptional events in chronological order. The log is
represented as a global variable of type Text:

 Log: Texts.Text;

It should have become clear by now that implementers of commands may rely on a rich arsenal of
abstract global facilities that reflect the current system state and make it accessible. In other
words, they may rely on a high degree of system integration. Therefore, Oberon features an
extraordinarily broad spectrum of mutually integrated facilities. For example, the system
distinguishes itself by a complete integration of the abstract data types Viewer and Text that we
encountered above. They will be the subject of Chapters 4 and 5.

Module Oberon assists the integration of these types with the following conceptual features, of
which the first two are familiar to us already: Standard parameter list for commands, system log,
generic text selection, and generic copy viewer. At this point we should add a word of clarification
to our use of the term "generic". It is synonymous with "interpretable individually by any viewer
(interactive task)" and is typically used in connection with messages or orders whose receiver's
exact identity is unknown.

Let us now go into a brief discussion of the generic facilities without, however, leaving the level of
our current abstraction and understanding.

3.3.2. Generic text selection

 32

Textual selections are characterized by a text, a stretch of characters within that text, and a time
stamp. Without further qualification "the text selection" always means "the most recent text
selection". It can be obtained programmatically by calling procedure GetSelection:

 PROCEDURE GetSelection (VAR text: Texts.Text; VAR beg, end, time: LONGINT);

The parameters specify the desired stretch of text starting at position beg and ending at end - 1 as
well as the associated time stamp. The procedure is implemented in form of a broadcast of a so-
called selection message to all viewers. The declaration of this message is

 SelectionMsg = RECORD (ViewerMsg)
 time: INTEGER;
 text: Texts.Text;
 beg, end: INTEGER
 END;

3.3.3. Generic copy viewer

Generic copying is synonymous with reproducing and cloning. It is the most elementary generic
operation possible. Again, a variant of type ViewerMsg is used for the purpose of transmitting
requests of the desired type:

 CopyMsg = RECORD (ViewerMsg) vwr: Viewers.Viewer END

Receivers of a copy message typically generate a clone of themselves and return it to the sender
via field vwr.

Let us now summarize this Section:. Oberon is an operating system that presents itself to its
clients in the form of a highly expressive abstract modular interface that exports many powerful
abstract data types like, for example, Viewer and Text. A rich arsenal of global data types and
generic facilities serve the purpose of system integration at a high degree. Programs in Oberon
are modeled as so-called commands, i.e. as exported parameterless procedures that do not
interact with the user. The collection of commands provided by a module appears as its user
interface. Parameters are passed to commands via a global parameter list, registered by the
calling task in the central module Oberon. Commands operate on the global state of the system.

3.4. Toolboxes
Modules typically appear in three different forms. The first is a module that encapsulates some
data, letting them be accessed only through exported procedures and functions. A good example
is Module FileDir, encapsulating the file directory and protecting it from disruptive access. A
second kind is the module representing an abstract data type, exporting a type and its associated
operators. Typical examples are modules Files, Modules, Viewers, and Texts. A third kind is the
collection of procedures pertaining to the same topic, such as module RS-232 handling
communication over a serial line.

Oberon adds a fourth form: the toolbox. By definition, this is a pure collection of commands in the
sense of the previous section. Toolboxes distinguish themselves principally from the other forms
of modules by the fact that they lie on top of the modular hierarchy. Toolbox modules are
"imported" by system users at run-time. In other words, their definitions define the user interface.
Typical examples are modules System and Edit. As a rule of thumb there exists a toolbox for
every topic or application.

As an example of a toolbox definition we quote an annotated version of module System:
DEFINITION System;

(*System management, Chapters 3 and 8*)
 PROCEDURE SetUser; (*identification*)
 PROCEDURE SetFont; (*for typed text*)
 PROCEDURE SetColor; (*for typed text and graphics*)
 PROCEDURE SetOffset; (*for typed text*)

 33

 PROCEDURE Date; (*set or display time and date*)
 PROCEDURE Collect; (*garbage*)

(*Display management, Chapter 4*)
 PROCEDURE Open; (*viewer*)
 PROCEDURE Close; (*viewer*)
 PROCEDURE CloseTrack;
 PROCEDURE Recall; (*most recently closed viewer*)
 PROCEDURE Copy; (*viewer*)
 PROCEDURE Grow; (*viewer*)
 PROCEDURE Clear; (*clear log*)

(*Module management, Chapter 6*)
 PROCEDURE Free; (*specified modules*)
 PROCEDURE ShowCommands; (*of specified module*)
 PROCEDURE ShowModules; (*list loaded modules*)

(*File management, Chapter 7*)
 PROCEDURE Directory;
 PROCEDURE CopyFiles;
 PROCEDURE RenameFiles;
 PROCEDURE DeleteFiles;)

(*System inspection, Chapter 8*)
 PROCEDURE Watch; (*tasks, memory and disk storage*)
END System;

An important consequence of our integrated systems approach is the possibility of constructing a
universal, interactive command interpreter bound to viewers of textual contents. If the text obeys
the following syntax (specified in Extended Backus-Naur Form EBNF), we call it command tool:

 CommandTool = { [Comment] CommandName [ParameterList] }.

 If present, the parameter list is made available to the called command via fields text and pos in
the global variable Par that is exported from module Oberon. Because this parameter list is
interpreted individually by each command, its format is completely open. However, we postulate
some conventions and rules for the purpose of a standardized user interface:

1.) The elements of a textual parameter list are universal syntactical tokens like name, literal
string, integer, real number, and special character.

2.) An arrow "^" in the textual parameter list refers to the current text selection for continuation. In
the special case of the arrow following the command name immediately, the entire parameter list
is represented by the text selection.

3.) An asterisk "*" in the textual parameter list refers to the currently marked viewer. Typically, the
asterisk replaces the name of a file. In such a case the contents of the viewer marked by the
system pointer (star) is processed by the command interpreter instead of the contents of a file.

4.) An at-character "@" in the textual parameter list indicates that the selection marks the
(beginning of the) text which is taken as operand.

5.) A terminator-character "~" terminates the textual parameter list in case of a variable number of
parameters.

Because command tools are ordinary, editable texts (in contrast to menus in conventional
systems) they can be customized "on the fly", which makes the system highly flexible. We refer
again to Figure 3.1 that shows a typical Oberon screen layout consisting of two vertical tracks, a
wider user track on the left and a narrow system track on the right. Three documents are
displayed in the user track: A text, a graphic, and a picture. In the system track we find one log-
viewer displaying the system log, two tool-viewers making available the standard system tool and
a customized private tool respectively.

In concluding this Chapter, let us exemplify the concepts of command and tool by the system
control section of the System toolbox. Consisting of the commands SetUser, Date, SetFont,

 34

SetColor, and Collect it is used to control system-wide facilities. In detail, their function is installing
the user's identification, displaying or setting the system date and time, presetting the system
type-font for typed text, setting the system color, and activating the garbage collector.

In summary, a toolbox is a special form of an Oberon module. It is defined as a collection of
commands. Appearing at the top of the modular hierarchy the toolboxes in their entirety fix the
system’s user interface. Command tools are sequences of textually represented command calls.
They are editable and customizable. In a typical Oberon screen layout the tools are displayed in
viewers within the system track.

 35

4 The Display System
The display screen is the most important part of the interface presented by a personal workstation
to its users. At first sight, it simply represents a rectangular output area. However, in combination
with the mouse, it quickly develops into a sophisticated interactive input/output platform of almost
unlimited flexibility. It is mainly its Janus-faced characteristic that makes the display screen stand
out from ordinary external devices to be managed by the operating system. In the current chapter
we shall give more detailed insight into the reasons for the central position the display system
takes within the operating system, and for its determining influence on the entire system
architecture. In particular, we shall show that the display system is a natural basis or anchor for
functional extensibility.

4.1. The screen layout model
In the early seventies, Xerox PARC in California launched the Smalltalk-project with the goal of
conceiving and developing new and more natural ways to communicate with personal computers
[Goldberg]. Perhaps the most conspicuous among several significant achievements of this
endeavor is the idea of applying the desktop metaphor to the display screen. This metaphor
comprises a desktop and a collection of possibly mutually overlapping pages of paper that are laid
out on the desktop. By projecting such a configuration onto the surface of a screen we get the
familiar picture of Figure 4.1 showing a collection of partially or totally visible rectangular areas on
a background, so-called windows or viewers.

Figure 4.1 Desktop showing partially overlapping viewers

The desktop metaphor is used by many modern operating systems and user interface shells both
as a natural model for the system to separate displayed data belonging to different tasks, and as a
powerful tool for users to organize the display screen interactively, according to individual taste
and preference. However, there are inherent drawbacks in the metaphor. They are primarily
connected with overlapping. Firstly, any efficient management of overlapping viewers must rely on
a subordinate management of (arbitrary) sub-rectangles and on sophisticated clipping operations.
This is so because partially overlapped viewers must be partially restored under control of the
viewer manager. For example, in Figure 4.1, rectangles a, b, and c in viewer B ought to be

 A

c

b

a

B

 36

restored individually after closing of viewer A. Secondly, there is a significant danger of covering
viewers completely and losing them forever. And thirdly, no canonical heuristic algorithms exist for
automatic allocation of screen space to newly opened viewers.

Experience has shown that partial overlapping is desirable and beneficial in rare cases only, and
so the additional complexity of its management [Binding, Wille] is hard to justify. Therefore,
alternate strategies to structure a display screen have been looked for. An interesting class of
established solutions can be titled as tiling. There are several variants of tiling [Cohen]. Perhaps
the most obvious one (because the most unconstrained one) is based on iterated horizontal or
vertical splitting of existing viewers. Starting with the full screen and successively opening viewers
A, B, C, D, E, and F we get to a configuration as in Figure 4.2.

Figure 4.2 Viewer configuration resulting from unconstrained tiling

A second variant is hierarchic tiling. Again, the hierarchy starts with a full screen that is now
decomposed into a number of vertical tracks, each of which is further decomposed into a number
of horizontal viewers. We decided in favor of this kind of tiling in Oberon, mainly because the
algorithm of reusing the area of a closed viewer is simpler and more uniform. For example,
assume that in Figure 4.2 viewer F has been closed. Then, it is straightforward to reverse the
previous opening operation by extending viewer E at its bottom end. However, if the closed viewer
is B, no such simple procedure exists. For example, the freed area can be shared between
viewers C and D by making them extend to their left. Clearly, no such complicated situations can
occur in the case of hierarchic tiling.

Hierarchic tiling is also used in Xerox PARC's Cedar system [Teitelman]. However, the Oberon
variant differs from the Cedar variant in some respects. Firstly, Oberon supports quick temporary
context switching by overlaying one track or any contiguous sequence of tracks with new layers.
In Figure 4.3 a snapshot of a standard Oberon display screen is graphically represented. It
suggests two original tracks and two levels of overlay, where the top layer is screen-filling.
Secondly, unlike Cedar display screens, Oberon displays do not provide reserved areas for
system-wide facilities, Standard Cedar screens feature a command row at the top and an icon row
at the bottom. And thirdly, Oberon is based on a different heuristic strategy for the automatic
placement of new viewers. As a Cedar default invariant, the area of every track is divided up
evenly among the viewers in this track. When a new viewer is to be placed, the existing viewers in
the track are requested to reduce their size and move up appropriately. The newly opened viewer
is then allocated in the freed spot at the bottom. In contrast, Oberon normally splits the largest
existing viewer in a given track into two halves of equal size. As an advantage of this latter
allocation strategy we note that existing contents are kept stable.

Figure 3.1 Typical Oberon
display confirguration with

tool track on the ri

A

B

C

D E

F

 37

Figure 4.3 Overlay of tracks and sequences of tracks

4.2. Viewers as objects
Although everybody seems to agree on the meaning of the term viewer, no two different system
designers actually do. The original role of a viewer as merely a separate display area has
meanwhile become heavily overloaded with additional functionality. Depending on the underlying
system are viewers' individual views on a certain configuration of objects, carriers of tasks,
processes, applications, etc. Therefore, we first need to define our own precise understanding of
the concept of viewer.

The best guide to this aim is the abstract data type Viewer that we introduced in Chapter 3. We
recapitulate: Type Viewer serves as a template describing viewers abstractly as “black boxes” in
terms of a state of visibility, a rectangle on the display screen, and a message handler. The exact
functional interface provided by a given variant of viewer is determined by the set of messages
accepted. This set is structured as a customized hierarchy of type extensions.

We can now obtain a more concrete specification of the role of viewer by identifying some basic
categories of universal messages that are expected to be accepted by all variants of viewer. For
example, we know that messages reporting about user interactions as well as messages defining
a generic operation are universal. These two categories of universal messages document the
roles of viewers as interactive tasks and as parts of an integrated system respectively.

In total, there are four such categories. They are here listed together with the corresponding topics
and message dispatchers:

Dispatcher Topic Message

Task scheduler dispatching of task reports user interaction
Command interpreter processing of command defines generic operation
Viewer manager organizing display area change of location or size
Document manager operating on document change of contents or format

These topics essentially define the role of Oberon viewers. In short, we may look at an Oberon
viewer as a non-overlapped rectangular box on the screen both acting as an integrated display
area for some objects of a document and representing an interactive task in the form of a sensitive
editing area.

Shifting emphasis a little and regarding the various message dispatchers as subsystems, we
recognize immediately the role of viewers as integrators of the different subsystems via message-

first overlay

second overlay

original layer

 38

based interfaces. In this light type Viewer appears as a common object-oriented basis of Oberon's
subsystems.

The topics listed above constitute some kind of backbone of the contents of the Chapters 3, 4 and
5. Task scheduling and command interpreting are already familiar to us from Sections 3.2 and 3.3.
Viewer management and text management will be the topics of Sections 4.4 and 5.2 respectively.
Thereby, the built-in type Text will serve as a prime example of a document type.

The activities that a viewer performs are basically controlled by events or, more precisely, by
messages representing event notices. We shall explain this in detail in Sections 4.4 and 5.3 in the
cases of an abstract class of standard viewers and a class of viewers displaying standard text
respectively.

Here is a preliminary overview of some archetypal kinds of message:

• After each key stroke a keyboard message containing the typed character is sent to the
current focus viewer and after each mouse click a mouse message reporting the new
state of the mouse is sent to the viewer containing the current mouse position.

• A message often represents some generic operation that is expected to be interpreted
individually by its recipients. Obvious examples in our context are "return current textual
selection", "copy-over stretch of text", and "produce a copy (clone)". Notice that generic
operations are the key to extensibility.

• In a tiling viewer environment, every opening of a new viewer and every change of size or
location of an existing viewer has an obvious effect on adjacent viewers. The viewer
manager therefore issues a message for every affected viewer requesting it to adjust its
size appropriately.

• Whenever the contents or the format of a document has changed, a message notifying all
visible viewers of the change is broadcast. Notice that broadcasting messages by a model
(document) to the entirety of its potential views (viewers) is an interesting implementation
of the famous MVC (model-view-controller) pattern that dispenses models from “knowing”
(registering) their views.

4.3. Frames as Basic Display Entities
When we introduced viewers in Chapter 3 and in the previous section, we simplified with the aim
of abstraction. We know already that viewers appear as elements of second order in the tiling
hierarchy. Having treated them as black boxes so far we have not revealed anything about the
continuation of the hierarchy. As a matter of fact, viewers are neither elementary display entities
nor atoms. They are just a special case of so-called display frames. Display frames or frames in
short are arbitrary rectangles displaying a collection of objects or an excerpt of a document. In
particular, frames may recursively contain other frames, a capability that makes them an
extremely powerful tool for any display organizer.

The type Frame is declared as

 Frame = POINTER TO FrameDesc;

 FrameDesc = RECORD
 next, dsc: Frame;
 X, Y, W, H: INTEGER;
 handle: Handler
 END;

The components next and dsc are connections to further frames. Their names suggest a multi-
level recursive hierarchical structure: next points to the next frame on the same level, while dsc
points to the (first) descendant, i.e. to the next lower level of the hierarchy of nested frames. X, Y,
W, H, and the handler handle serve the original purpose to that we introduced them. In particular,
the handler allows frames to react individually on the receipt of messages. Its type is

 39

 Handler = PROCEDURE (F: Frame; VAR M: FrameMsg);

where FrameMsg represents the root of a potentially unlimited tree hierarchy of possible
messages to frames:

 FrameMsg = RECORD END;

Having now introduced the concept of frames, we can reveal the whole truth about viewers. As a
matter of fact, type Viewer is a derived type, it is a type extension of Frame:

 Viewer = POINTER TO ViewerDesc;

 ViewerDesc = RECORD (FrameDesc)
 state: INTEGER
 END;

These declarations formally express the fact that viewers are nothing but a special case (or
variant or subclass) of general frames, additionally featuring a state of visibility. In particular,
viewers inherit the hierarchical structure of frames. This is an extremely useful property
immediately opening an unlimited spectrum of possibilities for designers of a specific subclass of
viewers to organize the representing rectangular area. For example, the area of viewers of, say,
class Desktop may take the role of a background being covered by an arbitrary collection of
possibly mutually overlapping frames. In other words, our decision of using a tiling viewer scheme
globally can easily be overwritten locally.

An even more important example of a predefined structure is provided by the abstract class of so-
called menu viewers whose shape is familiar from most snapshots taken of the standard Oberon
display screen. A menu viewer consists of a thin rectangular boundary line and an interior area
being vertically decomposed into a menu region at the top and a contents region at the bottom
(see Figure 4.4).

Figure 4.4 The compositional structure of a menu viewer

In terms of data structures, the class of menu viewers is defined as a type extension of Viewer
with an additional component menuH specifying the height of the menu frame:

 MenuViewer = POINTER TO MenuViewerDesc;

 MenuViewerDesc = RECORD (ViewerDesc)
 menuH: INTEGER
 END;

Each menu viewer V specifies exactly two descendants: The menu frame V.dsc and the frame of
main contents or main frame V.dsc.next. Absolutely nothing is fixed about the contents of the two
descendant frames. In the standard case, however, the menu frame is a text frame, displaying a
line of commands in inverse video mode. By definition, the nature of the main frame specifies the

1

menuH

H

W

menu frame

main frame

 40

type of the viewer. If it is a text frame as well, then we call the viewer a text viewer, if it a graphics
frame, we call it a graphics viewer etc.

4.4. Display management
Oberon's display system comprises two main topics: Viewer management and cursor handling.
Let us first turn to the much more involved topic of viewer management and postpone cursor
handling to the end of this Section. Before we can actually begin our explanations we need to
introduce the concept of the logical display area. It is modeled as a two-dimensional Cartesian
plane housing the totality of objects to be displayed. The essential point of this abstraction is a
rigorous decoupling of any aspects of physical display devices. As a matter of fact, any concrete
assignment of display monitors to certain finite regions of the display area is a pure matter of
configuring the system.

Being a subsystem of a system with a well-defined modular structure the display system appears
in the form of a small hierarchy of modules. Its core is a linearly ordered set consisting of three
modules: Display, Viewers, and MenuViewers, the latter building upon the formers. Conceptually,
each module contributes an associated class of display-oriented objects and a collection of related
service routines.

The following is an overview of the subsystem viewer management. Modules on upper lines
import modules on lower lines and types on upper lines extend types on lower lines.

Module Type Service

MenuViewer Viewer Message handling for menu viewers
Viewers Viewer Tiling viewer management
Display Frame Block-oriented raster operations

Inspecting the column titled Type we recognize precisely our familiar types Frame, Viewer, and
MenuViewer respectively, where the latter is an abbreviation of MenuViewers.Viewer.

In addition to the core modules of the display system a section in module Oberon provides a
specialized application programming interface (API) that simplifies the use of the viewer
management package by applications in the case of standard Oberon display configurations. We
shall come back to this topic in Section 4.6.

For the moment let us concentrate on the core of the viewer management and in particular on the
modules Viewers and MenuViewers, saving the discussion of the module Display for the next
section. Typically, we start the presentation of a module by listing and commenting its definition,
and we refer to subsequent listings for its implementation.

4.4.1. Viewers

Focusing first on module Viewers we can roughly define the domain of its responsibility as
"initializing and maintaining the global layout of the display area". From the previous discussion
we are well acquainted already with the structure of the global display space as well as with its
building blocks: The display area is hierarchically tiled with display frames, where the first two
levels in the frame hierarchy correspond to tracks and viewers respectively.

This is the formal definition:
DEFINITION Viewers;
 IMPORT Display;

 CONST restore = 0; modify = 1; suspend = 2; (*message ids*)

 TYPE Viewer = POINTER TO ViewerDesc;

 ViewerDesc = RECORD (Display.FrameDesc)
 state: INTEGER
 END;

 41

 ViewerMsg = RECORD (Display.FrameMsg)
 id: INTEGER;
 X, Y, W, H: INTEGER;
 state: INTEGER
 END;

 VAR curW: INTEGER;

 (*track handling*)
 PROCEDURE InitTrack (W, H: INTEGER; Filler: Viewer);
 PROCEDURE OpenTrack (X, W: INTEGER; Filler: Viewer);
 PROCEDURE CloseTrack (X: INTEGER);

 (*viewer handling*)
 PROCEDURE Open (V: Viewer; X, Y: INTEGER);
 PROCEDURE Change (V: Viewer; Y: INTEGER);
 PROCEDURE Close (V: Viewer);

 (*miscellaneous*)
 PROCEDURE This (X, Y: INTEGER): Viewer;
 PROCEDURE Next (V: Viewer): Viewer;

 PROCEDURE Recall (VAR V: Viewer);
 PROCEDURE Locate (X, H: INTEGER; VAR fil, bot, alt, max: Viewer);

 PROCEDURE Broadcast (VAR M: Display.FrameMsg);
END Viewers.

Some comments: A first group of procedures consisting of InitTrack, OpenTrack, and CloseTrack
supports the track structure of the display area. InitTrack creates a new track of width W and
height H by partitioning off a vertical strip of width W from the display area. In addition, InitTrack
initializes the newly created track with a filler viewer that is supplied as a parameter. The filler
viewer essentially serves as background filling up the track at its top end. It reduces to height 0 if
the track is covered completely by productive viewers.

Configuring the display area is part of system initialization after startup. It amounts to executing a
sequence of steps of the form

NEW(Filler); Filler.handle := HandleFiller; InitTrack(W, H, Filler)

where HandleFiller is supposed to handle messages that require modifications of size and cursor
drawing.

The global variable curW indicates the width of the already configured part of the display area.
Note that configuring starts with x = 0 and is non-reversible in the sense that the grid defined by
the initialized tracks cannot be refined later. However, remember that it can be coarsened at any
time by overlaying a contiguous sequence of existing tracks by a single new track.

Procedure OpenTrack serves exactly this purpose. The track (or sequence of tracks) to be
overlaid in the display-area must be spanned by the segment [X, X + W). Procedure CloseTrack is
inverse to OpenTrack. It is called to close the (topmost) track located at X in the display area, and
to restore the previously covered track (or sequence of tracks).

The next three procedures are used to organize viewers within individual tracks. Procedure Open
allocates a given viewer at a given position. More precisely, Open locates the viewer containing
the point (X, Y), splits it horizontally at height Y, and opens the viewer V in the lower part of the
area. In the special case of Y coinciding with the upper boundary line of the located viewer this is
closed automatically. Procedure Change allows to change the height of a given viewer V by
moving its upper boundary line to a new location Y (within the limits of its neighbors). Procedure
Close removes the given viewer V from the display area. Figure 4.5 makes these operations clear.

 42

Figure 4.5 Basic operations on viewers

The last group of procedures provides miscellaneous services. Procedure This identifies the
viewer displayed at (X, Y). Procedure Next returns the next upper neighbor of a given displayed
viewer V. Procedure Recall allows recalling and restoring the most recently closed viewer. Locate
is a procedure that assists heuristic allocation of new viewers. For any given track and desired
minimum height, procedure Locate offers a choice of some distinguished viewers in the track: the
filler viewer, the viewer at the bottom, an alternative choice, and the viewer of maximum height.
Finally, procedure Broadcast broadcasts a message to the display area, that is, sends the given
message to all viewers that are currently displayed.

It is now a good time to throw a glance behind the scenes. Let us start with revealing module
Viewer’s internal data structure. Remember that according to the principle of information hiding an
internal data structure is fully private to the containing module and accessible through the
module’s procedural interface only. Figure 4.6 shows a data structure view of the display snapshot
taken in Figure 4.4. Note that the overlaid tracks and viewers are still part of the internal data
structure.

In the data structure we recognize an anchor that represents the display area and points to a list
of tracks, each of them in turn pointing to a list of viewers, each of them in turn pointing to a list of
arbitrary sub-frames. Both the list of tracks and the list of viewers are closed to a ring, where the
filler track (filling up the display area) and the filler viewers (filling up the tracks) act as anchors.
Additionally, each track points to a (possibly empty) list of tracks lying underneath. These frames
are invisible on the display, and shaded in Figure 4.6.

change V

open V close V

V
V

 43

Figure 4.6 A snapshot of the internal data structure corresponding to Figure 4.3

Technically, the track descriptor type TrackDesc is a private extension of the viewer descriptor
type ViewerDesc. Repeating the declarations of viewer descriptors and frame descriptors, we get
to this hierarchy of types:

TrackDesc = RECORD (ViewerDesc)
 under: Display.Frame
END;

filler track

user track

filler viewer

graphic viewer

filler viewer

GUI viewer

display area

user track

system
track

user track

menu frame

graphic frame

under

next

dsc

 44

ViewerDesc = RECORD (FrameDesc)
 state: INTEGER
END;

FrameDesc = RECORD
 next, dsc: Frame;
 X, Y, W, H: INTEGER;
 handle: Handler
END;

It is noteworthy that the data structure of the viewer manager is heterogeneous with Frame as
base type. It provides a nice example of a nested hierarchy of frames with the additional property
that the first two levels correspond to the first two levels in the type hierarchy defined by Track,
Viewer, and Frame.

In an object-oriented environment objects are autonomous entities in principle. However, they may
be bound to some higher instance (other than the system) temporarily. For example, we can look
at the objects belonging to a module's private data structure as bound to this module. Deciding if
an object is currently bound is then a fundamental problem. In the case of viewers, this
information is contained in an extra instance variable called state.

As a system invariant, we have for every viewer V

V is bound to module Viewers ⇔ V.state # 0

If we call visible any displayed viewer and suspended any viewer that is covered by an overlaying
track we can refine this invariant to

{V is visible ⇔ V.state > 0 } and { V is suspended ⇔ V.state < 0 }

In addition, more detailed information about the kind of viewer V is given by the magnitude
|V.state|:

V.state kind of viewer

 0 closed
 1 filler
-1 productive

The magnitude |V.state| is kept invariant by module Viewers. It could be used, for example, to
distinguish different levels of importance or preference with the aim of supporting a smarter
algorithm for heuristic allocation of new viewers. The variable state is treated as read-only by
every module other than Viewers.

We are now sufficiently prepared to understand how the exported procedures of module Viewers
work behind the scenes. All of them operate on the internal dynamic data structure just explained.
Some use the structure as a reference only or operate on individual elements (procedures This,
Next, Locate, Change), others add new elements to the structure (procedures InitTrack,
OpenTrack, Open), and even others remove elements (procedures CloseTrack, Close). Most
procedures have side-effects on the size or state of existing elements.

Let us now change perspective and look at module Viewers as a general low-level manager of
viewers whose exact contents are unknown to it (and whose controlling software might have been
developed years later). In short, let us look at module Viewers as a manager of black boxes. Such
an abstraction immediately makes it impossible for the implementation to call fixed procedures for,
say, changing a viewer's size or state. The facility needed is a message-oriented interface.

TYPE ViewerMsg = RECORD (Display.FrameMsg)
 id: INTEGER;
 X, Y, W, H: INTEGER;
 state: INTEGER
 END;

 45

There exist three variants of Viewer messages, discriminated by the field id: Restore contents,
modify height (extend or reduce at bottom), and suspend (close temporarily or permanently). The
additional components of the message inform about the desired new location, size, and state.

The following table lists senders, messages, and recipients of viewer messages.

Originator Message Recipients

OpenTrack Suspend temporarily Viewers covered by opening track
CloseTrack Suspend permanently Viewers in closing track
Open Modify or suspend Upper neighbor of opening viewer
Change Modify Upper neighbor of changing viewer
Close Suspend permanently Closing viewer

4.4.2. Menu Viewers

So far, we have treated viewers abstractly as black boxes. Our next step is now to focus on a
special class of viewers called menu viewers. Remembering the definition given earlier we know
that a menu viewer is characterized by a structure consisting of two vertically tiled “descendant”
frames, a menu frame at the top and a frame of contents at the bottom. Because the nature and
contents of these frames are typically unknown by their “ancestor” (or “parent”) viewer, a collection
of abstract messages is again a postulating form of interface. As net effect, the handling of menu
viewers boils down to a combination of preprocessing, transforming and forwarding messages to
the descendant frames. In short, the display space in Oberon is hierarchically organized and
message passing within the display space obeys the pattern of strict parental control.

Again, we start our more detailed discussion with a module interface definition:

DEFINITION MenuViewers;
 IMPORT Viewers, Display;
 CONST extend = 0; reduce = 1; move = 2; (*message ids*)

 TYPE
 Viewer = POINTER TO ViewerDesc;
 ViewerDesc = RECORD (Viewers.ViewerDesc)
 menuH: INTEGER
 END;

 ModifyMsg = RECORD (Display.FrameMsg)
 id: INTEGER;
 dY, Y, H: INTEGER
 END;

 PROCEDURE Handle (V: Display.Frame; VAR M: Display.FrameMsg);
 PROCEDURE New (Menu, Main: Display.Frame; menuH, X, Y: INTEGER): Viewer;
END MenuViewers.

The interface represented by this definition is conspicuously narrow. There are just two
procedures: A generator procedure New and a standard message handler Handle. The generator
returns a newly created menu viewer displaying the two (arbitrary) frames passed as parameters.
The message handler implements the entire “behavior” of an object and in particular the above
mentioned message dispatching functionality.

Message handlers in Oberon are implemented in the form of procedure variables that obviously
must be initialized properly at object creation time. In other words, some concrete behavior must
explicitly be bound to each object, where different instances of the same object type could
potentially have a different behavior and/or the same instance could change its behavior during its
lifetime. Our object model is therefore instance-centered.

Conceptually, the creation of an object is an atomic action consisting of three basic steps:

allocate memory block; install message handler; initialize state variables

 46

In the case of a standard menu viewer V this can be expressed as

NEW(V); V.handle := Handle; V.dsc := Menu; V.dsc.next := Main; V.menuH := menuH

With that, calling New is equivalent with

create V; open V at X, Y

where opening V needs assistance by module Viewers.

The implementation of procedure Handle embodies the standard strategy of message handling by
menu viewers. The following code is a coarse-grained view of it.

Message handler for menu viewers

 IF message reports about user interaction THEN
 IF variant is mouse tracking THEN
 IF mouse is in menu region THEN
 IF mouse is in upper menu region and left key is pressed THEN
 handle changing of viewer
 ELSE delegate handling to menu-frame
 END
 ELSE
 IF mouse is in main-frame THEN delegate handling to main-frame END
 END
 ELSIF variant is keyboard input THEN
 delegate handling to menu frame;
 delegate handling to main frame
 END
 ELSIF message defines generic operation THEN
 IF message requests copy (clone) THEN
 send copy message to menu frame to get a copy (clone);
 send copy message to main frame to get a copy (clone);
 create menu viewer clone from copies
 ELSE
 delegate handling to menu frame;
 delegate handling to main frame
 END
 ELSIF message reports about change of contents THEN
 delegate handling to menu frame;
 delegate handling to main frame
 ELSIF message requests change of location or size THEN
 IF operation is restore THEN
 draw viewer area and border;
 send modify message to menu frame to make it extend from height 0;
 send modify message to main frame to make it extend from height 0
 ELSIF operation is modify THEN
 IF operation is extend THEN
 extend viewer area and border;
 send modify message to menu frame to make it extend;
 send modify message to main frame to make it extend
 ELSE (*reduce*)
 send modify message to main frame to make it reduce;
 send modify message to menu frame to make it reduce;
 reduce viewer area and border
 END
 ELSIF operation is suspend THEN
 send modify message to main frame to make it reduce to height 0;
 send modify message to menu frame to make it reduce to height 0
 END
 END

 47

In principle, the handler acts as a message dispatcher that either processes a message directly
and/or delegates its processing to the descendant frames. Note that the handler's main alternative
statement discriminates precisely among the four basic categories of messages.

From the above outlined algorithm handling copy messages, that is, requests for generating a
copy or clone of a menu viewer, we can derive a general recursive scheme for the creation of a
clone of an arbitrary frame:

send copy message to each element in the list of descendants;
generate copy of the original frame descriptor;
attach copies of descendants to the copy of descriptor

The essential point here is the use of new outgoing messages in order to process a given
incoming message. We can regard message processing as a transformation that maps incoming
messages into a set of outgoing messages, with possible side-effects. The simplest case of such
a transformation is known as delegation. In this case, the input message is simply passed on to
the descendant(s).

As a fine point we clarify that the above algorithm is designed to create a deep copy of a
composite object (a menu viewer in our case). If a shallow copy would be desired, the
descendants would not have to be copied, and the original descendants instead of their copies
would be attached to the copy of the composite object.

Another example of message handling is provided by mouse tracking. Assume that a mouse
message is received by a menu viewer while the mouse is located in the upper part of its menu
frame and the left mouse key is kept down. This means "change viewer's height by moving its top
line vertically". No message to express the required transformation of the sub-frames yet exists.
Consequently, module MenuViewers takes advantage of our open (extensible) message model
and simply introduces an appropriate message type called ModifyMsg:

ModifyMsg = RECORD (Display.FrameMsg)
 id: INTEGER;
 dY, Y, H: INTEGER
END;

The field id specifies one of two variants: extend or reduce. The first variant of the message
requests the receiving frame to move by the vertical translation vector dY and then to extend to
height H at bottom. The second variant requests the frame to reduce to height H at bottom and
then to move by dY. In both cases Y indicates the Y-coordinate of the new lower-left corner.
Figure 4.7 summarizes this graphically.

Messages arriving from the viewer manager and requesting the receiving viewer to extend or
reduce at its bottom are also mapped into messages of type ModifyMsg. Of course, no translation
is needed in these cases, and dY is 0.

The attentive reader might perhaps have asked why the standard handler is exported by module
MenuViewers at all. The thought behind is reusability of code. For example, a message handler
for a subclass of menu viewers could be implemented effectively by reusing menu viewer's
standard handler. After having handled all new or differing cases first it would simply (super-)call
the standard handler subsequently.

 48

Figure 4.7 The modify frame operation

4.4.3. Cursor Management

Traditionally, a cursor indicates and visualizes on the screen the current location of the caret in a
text or, more generally, the current focus of attention. A small arrow or similar graphic symbol is
typically used for this purpose. In Oberon, we have slightly generalized and abstracted this
concept. A cursor is a path in the logical display area whose current position can be made visible
by a marker.

The viewer manager and the cursor handler are two concurrent users of the same display area.
Actually, we should imagine two parallel planes, one displaying viewers and the other displaying
cursors. If there is just one physical plane we take care of painting markers non-destructively, for
example in inverse-video mode. Then, no precondition must be established before drawing a
marker. However, in the case of a viewer task painting destructively in its viewer's area, the area
must be locked first after turning invisible all markers in the area.

The technical support of cursor management is again contained in module Oberon. The
corresponding application programming interface is

DEFINITION Oberon;
 TYPE Marker = RECORD
 Fade, Draw: PROCEDURE (x, y: INTEGER)
 END;

 Cursor = RECORD
 marker: Marker; on: BOOLEAN; X, Y: INTEGER
 END;

 VAR Arrow, Star: Marker;
 Mouse, Pointer: Cursor;

 PROCEDURE OpenCursor (VAR c: Cursor);
 PROCEDURE FadeCursor (VAR c: Cursor);
 PROCEDURE DrawCursor (VAR c: Cursor; VAR m: Marker; X, Y: INTEGER);

frame before extension

Y

X

frame after extension

M.Y

X

frame before reduction

Y

X

frame after reduction

M.Y

X

M.dY

M.dY

 49

 PROCEDURE MarkedViewer (): Viewers.Viewer;
 PROCEDURE RemoveMarks (X, Y, W, H: INTEGER);
 ...
 END Oberon.

The state of a cursor is given by its mode of visibility (on), its position (X, Y) in the display area,
and the current marker. Marker is an abstract data type with an interface consisting of two
operations Fade and Draw. The main benefit we can draw from this abstraction is once more
conceptual independence of the underlying hardware. For example, Fade and Draw can adapt to
a given monitor hardware with built-in cursor support or, in case of absence of such support, can
simply be implemented as identical procedures (an involution) drawing the marker pattern in
inverse video mode.

The functional interface to cursors consists of three operations: OpenCursor to open a new cursor,
FadeCursor to switch off the marker of an open cursor, and DrawCursor to extend the path of a
cursor to a new position and mark it with the given marker. We emphasize that the marker
representing a given cursor can change its shape dynamically on the fly.

Two cursors, Mouse and Pointer are predefined. They represent the mouse and an interactively
controlled global system pointer respectively. Typically (but not necessarily) these cursors are
visualized by the built-in markers Arrow (a small arrow pointing to north-west) and Star (a star
symbol) respectively. The pointer can be used to mark any displayed object. It serves primarily as
an implicit parameter of commands.

Two assisting service procedures MarkedViewer and RemoveMarks are added in connection with
the predefined cursors. MarkedViewer returns the viewer that is currently marked by the pointer.
Its resulting value is equivalent to Viewers.This(Pointer.X, Pointer.Y). RemoveMarks turns
invisible the predefined cursors within a given rectangle in the display area. This procedure is
used to lock the rectangle for its caller.

Summary of the essential points and characteristics of Oberon's concept of cursor handling:

1.) By virtue of the use of abstract markers and of the logical display area, any potential hardware
dependence is encapsulated in system modules and is therefore hidden from the application
programmer. Cursors are moving uniformly within the whole display area, even across screen
boundaries.

2.) Cursor handling is decentralized by delegating it to the individual handlers that are installed in
viewers. Typically, a handler reacts on the receipt of a mouse tracking message by drawing the
mouse cursor at the indicated new position. The benefit of such individualized handling is
flexibility. For example, a smart local handler might choose the shape of the visualizing marker
depending on the exact location, or it might force the cursor onto a grid point.

3.) Even though cursor handling is decentralized, there is some intrinsic support for cursor
drawing built into the declaration of type Cursor. Cursors are objects of full value and, as such,
can "memorize" their current state. Consequently, the interface operations FadeCursor and
DrawCursor need to refer to the desired future state only.

4.) Looking at the viewer manager as one user of the display area, the cursor handler is a second
(and logically concurrent) user of the same resource. If there is just one physical plane
implementing the display area, any region must be locked by a current user before destructive
painting. Therefore, markers are usually painted non-destructively in inverse-video mode.

Let us now recapitulate the entire Section. The central resource managed by the display
subsystem is the logical display area whose purpose is abstraction from the underlying display
monitor hardware. The display area is primarily used by the viewer manager for the
accommodation of tracks and viewers, which are merely the first two levels of a potentially
unlimited nested hierarchy of display frames. For example, standard menu viewers contain two
subordinate frames: A menu frame and a main frame of contents. Viewers are treated as black
boxes by the viewer manager and are addressed via messages. Viewers and, more generally
frames, are used as elements of message-based interfaces connecting the display subsystem

 50

with other subsystems like the task scheduler and the various document managers. Finally, the
display area is also the living room of cursors. In Oberon, a cursor is a marked path. Two standard
cursors Mouse and Pointer are predefined.

4.5. Raster Operations
In Section 4.4 we introduced the display area as an abstract concept, modeled as a two-
dimensional Cartesian plane. So far, this view of the display space was sufficient because we
were interested in its global structure only and ignored contents completely. However, if we are
interested in the displayed contents, we need to reveal more details about the model.

The Cartesian plane representing the display area is discrete. We consider points in the display
area as grid points or picture elements (pixels), and we assume contents to be generated by
assigning colors to the pixels. For the moment, the number of possible colors a pixel can attain is
irrelevant. In the binary case of two colors we think of one color representing background and the
other color representing foreground.

The most elementary operation generating contents in a discrete plane is "set color of pixel" or
"set pixel" for short. While a few drawing algorithms directly build on this atomic operation, block-
oriented functionality (traditionally called raster operations) plays a much more important role in
practice. By a block we mean a rectangular area of pixels whose bounding lines are parallel to the
axes of the coordinate system.

Raster operations are based on a common principle: A block of width SW and height SH of source
pixels is placed at a given point of destination (DX, DY) in the display area. In the simplest case,
the destination block (DX, DY, SW, SH) is plainly overwritten by the source block. In general, the
new value of a pixel in the destination block is a combination of its old value and the value of the
corresponding source pixel:

d := F(s, d)

F is sometimes called the mode of combination of the raster operation. The raster is stored as an
array of values of type SET, each set representing 32 black/white pixels. The modes of combining
source and destination is implemented by the following set operations:

mode operation

replace s
paint s + d (or)
invert s / d (xor)

Note that invert is equivalent with inverse video mode if s is TRUE for all pixels.

There are many different variants of raster operations. Some refer to a source block in the display
area, others specify a constant pattern to be taken as source block. Some variants require
replication of the source block within a given destination block (DX, DY, DW, DH) rather than
simple placement.

The challenge when designing a raster interface is finding a unified, small and complete set of
raster operations that covers all needs, in particular including the need of placing character
glyphs. The amazingly compact resulting set of Oberon raster operations is exported by module
Display:

DEFINITION Display;
 CONST black = 0; white = 1; (*colors*)
 replace = 0; paint = 1; invert = 2; (*operation modes*)

 PROCEDURE Dot (col, x, y, mode: INTEGER);
 PROCEDURE ReplConst (col, x, y, w, h, mode: INTEGER);

 PROCEDURE CopyPattern (col, patadr, x, y, mode: INTEGER);
 PROCEDURE CopyBlock (sx, sy, w, h, dx, dy, mode: INTEGER);

 51

 PROCEDURE ReplPattern (col, patadr, x, y, w, h, mode: INTEGER);
END Display.

In the parameter lists of the above raster operations, mode is the mode of combination (replace,
paint, or invert). CopyBlock copies the source block (sx, sy, w, h) to position (dx, dy) and uses
mode to combine new contents in the destination block (dx, dy, w, h). It is assumed tacitly that the
numbers of colors per pixel in the source block and in the destination area are identical. It is
perhaps informative to know that CopyBlock is essentially equivalent with the famous BitBlt (bit
block transfer) in the SmallTalk project [Goldberg]. In Oberon, CopyBlock is used primarily for
scrolling contents within a viewer.

The remaining raster operations use a constant pattern. Patterns are implemented as arrays of
bytes, and the parameter patadr is the address of the relevant pattern. The first two bytes indicate
width w and height h of the pattern. Pattern data are given as a sequence of bytes to be placed
into the destination block from left to right and from bottom to top. Each line takes an integral
number of bytes. Hence, the number of data bytes is ((w+7) DIV 8) * h. An example is shown in
Figure 4.8.

Figure 4.8 A pattern and its encoding as an array of bytes (in hex)

Some standard patterns are included in module Display and exported as global variables. Among
them are patterns arrow, hook, and star intended to represent the cursor, the caret, and the
marker. A second group of predefined patterns supports drawing graphics.

The parameter col in the pattern-oriented raster operations specifies the pattern's foreground
color. Colors black (background) and white are predefined. Procedure CopyPattern copies the
pattern to location x, y in the display area, using the given combination mode. It is probably the
most frequently used operation of all because it is needed to write text. Procedure ReplPattern
replicates the given pattern to the given destination block. It starts at bottom left and proceeds
from left to right and from bottom to top. Procedures Dot and ReplConst are special cases of
CopyPattern and ReplPattern respectively, taking a fixed implicit pattern consisting of a single
foreground pixel. Dot is exactly our previously mentioned "set pixel". ReplConst is used to draw
horizontal and vertical lines of various widths.

The raster operations are a prominent example of the use of Oberon's data type SET. Formally,
variables are sets of integers between 0 and 31. Here, they are taken as sets of bits numbered
from 0 to 31. We consider the replication of 1's (mode = replace or paint) in the rectangle with
origin x, y, width w, and height h. Every line consists of 1024 pixels, or 32 words. al, ar, a0, a1 are
addresses.

VAR al, ar, a0, a1: INTEGER;
 left, right, pixl, pixr: SET;

al := base + y*128;
ar := ((x+w-1) DIV 32)*4 + al; al := (x DIV 32)*4 + al;
left := {(x MOD 32) .. 31}; right := {0 .. ((x+w-1) MOD 32)};
FOR a0 := al TO al + (h-1)*128 BY 128 DO
 SYSTEM.GET(a0, pixl); SYSTEM.GET(ar, pixr);
 SYSTEM.PUT(a0, pixl + left);

07 07 3E 49 41 49 41 41 3E

 52

 FOR a1 := a0+4 TO ar-4 BY 4 DO SYSTEM.PUT(a1, {0 .. 31}) END ;
 SYSTEM.PUT(ar, pixr + right)
END

The definition (and even more so the implementation) of module Display provides support for a
restricted class of possible hardware configurations only. Any number of display monitors is
theoretically possible. However, they must be mapped to a regular horizontal array of predefined
cells in the display area. Each cell is vertically split into two congruent regions, where the
corresponding monitor is supposed to be able to select and display one of the two regions
alternatively. Finally, it is assumed that all cells hosting black-and-white monitors are allocated to
the left of all cells hosting color monitors. Figure 4.9 gives an impression of such a configuration.

Figure 4.9 General, regular cell structure of display area

Under these restrictions any concrete configuration can be parameterized by the variables of the
definition above. Unit, Width, and Height specify the extent of a displayed region, where Width and
Height are width and height in pixel units, and Unit is the size of a pixel in units of 1/36’000 mm.
1/36’000 mm is a common divisor of all of the standard metric units used by the typesetting
community, like mm, inch, Pica point and point size of usual printing devices. Bottom and UBottom
specify the bottom y-coordinate of the primary region and the secondary region respectively.
Finally, Left and ColLeft give the left x-coordinate of the area of black-and-white monitors and of
color monitors respectively.

4.6. Standard display configurations and toolbox
Let us now take up again our earlier topic of configuring the display area. We have seen that no
specific layout of the display area is distinguished by the general viewer management itself.
However, some support of the familiar standard Oberon display look is provided by module
Oberon.

In the terminology of this module, a standard configuration consists of one or several horizontally
adjacent displays, where a display is a pair consisting of two tracks of equal height, a user track
on the left and a system track on the right. Note that even though no reference to any physical
monitor is made, a display is typically associated with a monitor in reality.

This is the relevant excerpt of the definition:
DEFINITION Oberon;
 PROCEDURE OpenDisplay (UW, SW, H: INTEGER);
 PROCEDURE OpenTrack (X, W: INTEGER);
 PROCEDURE DisplayWidth (X: INTEGER): INTEGER;
 PROCEDURE DisplayHeight (X: INTEGER): INTEGER;
 PROCEDURE UserTrack (X: INTEGER): INTEGER;

third cell

black / white area color area

primary region

secondary region

first cell second cell

 53

 PROCEDURE SystemTrack (X: INTEGER): INTEGER;
 PROCEDURE AllocateUserViewer (DX: INTEGER; VAR X, Y: INTEGER);
 PROCEDURE AllocateSystemViewer (DX: INTEGER; VAR X, Y: INTEGER);
END Oberon.

Procedure OpenDisplay initializes and opens a new display of the dimensions H (height), UW
(width of user track), and SW (width of system track). Procedure OpenTrack overlays the
sequence of existing tracks spanned by the segment [X, X + W) by a new track. Both procedure
OpenDisplay and OpenTrack take from the client the burden of creating a filler viewer.

The next group of procedures DisplayWidth, DisplayHeight, UserTrack and SystemTrack return
width or height of the respective structural entity located at position X in the display area.

Procedures AllocateUserViewer and AllocateSystemViewer make proposals for the allocation of a
new viewer in the desired track of the display located at DX. In first priority, the location is
determined by the system pointer that can be set manually. If the pointer is not set, a location is
calculated on the basis of some heuristics whose strategies rely on different splitting fractions that
are applied in the user track and in the system track respectively, with the aim of generating
aesthetically satisfactory layouts.

In addition to the programming interface provided by module Oberon for the case of standard
display layouts, the display management section in the System toolbox provides a user interface:

DEFINITION System; (*Display management*)
 PROCEDURE Open; (*viewer*)
 PROCEDURE Close; (*viewer*)
 PROCEDURE CloseTrack;
 PROCEDURE Recall; (*most recently closed viewer*)
 PROCEDURE Copy; (*viewer*)
 PROCEDURE Grow; (*viewer*)
 PROCEDURE Clear; (*clear system log*)
END System.

In turn, these commands are called to open a text viewer in the system track, close a viewer,
close a track, recall (and reopen) the most recently closed viewer, copy a viewer, and grow a
viewer. The commands Close, CloseTrack, Recall, Copy, and Grow are generic. Close, Copy, and
Grow are typically included in the title bar of a menu viewer. Their detailed implementations follow
subsequently.

References
[Binding] C. Binding, User Interface Components based on a Multiple Window Package,
 University of Washington, Seattle, Technical Report 85-08-07.

[Cohen] E.S. Cohen, E.T. Smith, L.A. Iverson, Constraint-Based Tiled Windows,
 IEEE, 1985

[Wille] M. Wille, Overview: Entwurf und Realisierung eines Fenstersystems für
Arbeitsplatzrechner, Diss. ETH Nr. 8771, 1988.

[Goldberg] A. Goldberg, Smalltalk-80: The Interactive Programming Environment,
 Addison-Wesley 1984.

[Teitelman] W. Teitelman, "A tour through Cedar",
 IEEE Software, 1, (2), 44-73 (1984).

 54

5 The text system
At the beginning of the computing era, text was the only medium mediating information between
users and computers. Not only was a textual notation used to denote all kinds of data and objects
via names and numbers (represented by sequences of characters and digits respectively), but
also for the specification of programs (based on the notions of formal language and syntax) and
tasks. Actually, not even the most modern and most sophisticated computing environments have
been able to make falter the dominating role of text substantially. At most, they have introduced
alternative models like graphical user interfaces (GUI) as a graphical replacement for command
lines.

There are many reasons for the popularity of text in general and in connection with computers in
particular. To name but a few: Text containing any arbitrary amount of information can be built
from a small alphabet of widely standardized elements (characters), their building pattern is
extremely simple (lining up elements), and the resulting structure is most elementary (a
sequence). And perhaps most importantly, syntactically structured text can be parsed and
interpreted by a machine.

In computing terminology, sequences of elements are called files and, in particular, sequences of
characters are known as text files. Looking at their binary representation, we find text files
excellently suited to be stored in computer memories and on external media. Remember that
individual characters are usually encoded in one byte each (ASCII-code). We can therefore
identify the binary structure of text files with sequences of bytes, matching perfectly the structure
of any underlying computer storage. We should recall at this point that, with the possible exception
of line-break control characters, rendering information is not part of ordinary text files. For
example, the choices of character style and of paragraph formatting parameters are entirely left to
the rendering interpreter.

Unfortunately, in conventional computing environments, text is merely used for input/output, and
its potential is not nearly exploited optimally. Input texts are typically read from the keyboard under
control of some text editor, interpreted and then discarded. Output text is volatile. Once displayed
on the screen it is no longer available to any other parts of the program. The root of the problem is
easily located: Conventional operating systems neither feature an integrated management nor an
abstract programming interface (API) for texts.

Of course, such poor support of text on the level of programming must reflect itself on the user
surface. More often than not, users are forced to retype a certain piece of text instead of simply
copy/pasting it from elsewhere on the screen. Investigations have shown that, in average, up to
80% of required input text is already displayed somewhere.

Motivated by our positive experience with integrated text in the Cedar system [Teitelman] we
decided to provide a central text management in Oberon at a sufficiently low system level.
However, this is not enough. We actually need an abstract programming interface (API) for text
that is, an abstract data type Text, together with a complete set of operations. We shall devote
Section 5.1 to the explanation of this data type. In Section 5.2, we take a closer look at the basic
text management in Oberon, including data structures and algorithms used for the implementation
of type Text.

Text frames are a special class of display frames. They appear typically (but not necessarily) as
frames within a menu viewer (see Section 4.4.2). Their role is double-faced: a) Rendering text on
the display screen and b) interpreting interactive editing commands. The details will be discussed
in Section 5.3.

With the aim of exploiting the power of modern bitmap-displays and also of reusing the results of
earlier projects in the field of digital font design, we decided in favor of supporting “rich texts” in
Oberon, including graphical attributes and in particular font specification. In Section 5.4 we shall
explain the font machinery, starting from an abstract level and proceeding down to the level of
raster data.

 55

5.1. Text as an abstract data type
The concept of abstraction is arguably the most important achievement of programming language
development. It provides a powerful tool to create simplified views of complicated things and
connections. Two prominent examples of program abstractions are definitions (interfaces) and
abstract data types, embodying simplified views on a certain piece of program and on a certain kind
of data respectively.

We shall now give a precise definition of the notion of text in Oberon by presenting it as an abstract
data type. It is important not to confuse this type with the far less powerful type String as it is often
supported by advanced programming languages. In this Section we carefully avoid revealing any
implementation aspects of the abstract type Text. Our viewpoint is that of an application program
operating on text abstractly or using it as a medium of communication.

Nevertheless, let us first use a symbolic looking glass to get a refined understanding of the concept
of character in the context of rich texts. We know that each character represents a textual element
of information. If displayed, it also refers to some specific graphical pattern, often called glyph. In
Oberon, we do justice to both aspects by thinking of the ASCII-code as an index into a font that is
into a set of glyphs of the same style. Representing characters as pairs (font, ref), where font
designates a font and ref the character's ASCII-code and adding two more attributes color and
vertical offset, we get to a quadruple representation (font, ref, col, voff) of characters. The
components font, color, and vertical offset together are often referred to as looks. With that, we can
now define a (rich) text as a sequence of characters with looks. We shall treat the topic of fonts and
glyphs thoroughly in Section 5.4.

For the moment, however, let us continue our discussion of the abstract data type Text. Formally,
we define it as

Text = POINTER TO TextDesc;

TextDesc = RECORD
 len: INTEGER;
 notify: Notifier
END;

There is only one state variable and one method. The variable len represents the current length of
the described text (i.e. the number of characters in the sequence). The procedure variable notify is
included as a method (occasionally called after-method) to notify interested clients of state
changes.

By definition, each abstract data type comes with a complete set of operations. In the case of Text,
three different groups corresponding to three different topics need to be considered, loading (from
file), storing (to file), editing, and accessing (reading and writing) respectively.

5.1.1. Loading and Storing Text

Let us start with the file group. We first introduce a pair of mutually inverse operations called
internalize and externalize. Their meaning is "load from file and build up an internal data structure"
and "serialize the internal data structure and store it on file" respectively. There are three
corresponding procedures:

PROCEDURE Open (T: Text; name: ARRAY OF CHAR);
PROCEDURE Load (T: Text; f: Files.File; pos: INTEGER; VAR len: INTEGER);
PROCEDURE Store (T: Text; f: Files.File; pos: INTEGER; VAR len: INTEGER);

Logical entities like texts are stored in Oberon on external media in the form of sections. A section
is addressed by a pair (file, pos) consisting of a file descriptor and a starting position. In general, the
structure of sections obeys the following syntax:

section = identification type length contents.

 56

Procedure Open internalizes a named text file (consisting of a single text section), procedure Load
internalizes an arbitrary text section starting at (f, pos), and procedure Store externalizes a text
section to (f, pos). The parameter T designates the internalized text. len returns the length of the
section. Note that in case of Load the identification of the section must have been read and
consumed before the loader is called.

5.1.2. Editing Text

Our next group of operations supports text editing. It comprises four procedures:

PROCEDURE Delete (T: Text; beg, end: INTEGER);
PROCEDURE Insert (T: Text; pos: INTEGER; B: Buffer);
PROCEDURE Append (T: Text; B: Buffer);

PROCEDURE ChangeLooks (T: Text; beg, end: INTEGER;
 sel: SET; fnt: Fonts.Font; col, voff: INTEGER);

Again, we should first explain the types of parameters. Procedures Delete and ChangeLooks each
take a stretch of text as an argument which, by definition, is an interval [beg, end) within the given
text. In the parameter lists of Insert and Append we recognize a new data type Buffer.

Buffers are a facility to hold anonymous sequences of characters. Type Buffer presents itself again
as an abstract data type:

Buffer = POINTER TO BufDesc;

BufDesc = RECORD len: INTEGER END;

len specifies the current length of the buffered sequence. The following procedures represent the
intrinsic operations on buffers:

PROCEDURE OpenBuf (B: Buffer);
PROCEDURE Copy (SB, DB: Buffer);
PROCEDURE Save (T: Text; beg, end: INTEGER; B: Buffer);

Their function is in turn opening a given buffer B, copying a buffer SB to DB, saving a stretch [beg,
end) of text in a given buffer, and recalling the most recently deleted stretch of text and putting it
into buffer B.

Buffer is used as an auxiliary data type in editing procedures. Procedure Delete deletes the given
stretch [beg, end) within text T, Insert inserts the buffer's contents at position pos within text T, and
Append(T, B) is a shorthand form for Insert(T, T.len, B). Note that, as a side-effect of Insert and
Append, the buffer involved is emptied. Finally, procedure ChangeLooks allows to change selected
looks within the given stretch [beg, end) of text T. sel is a mask selecting a subset of the set of
looks { font, color, vertical offset }.

It is time now to come back to the notifier concept. Recapitulate that notify is an “after-method”. It
must be installed by the client when opening the text and is called at the end of every editing
operation. Its signature is

Notifier = PROCEDURE (T: Text; op, beg, end: INTEGER);

The parameters op, beg, and end report about the operation (op) that calls the notifier and on the
affected stretch [beg, end) of the text. There are three different possible variants of op
corresponding to the three different editing operations: op = delete, insert, replace correspond to
procedures Delete, Insert (and Append), and ChangeLooks respectively.

By far the most important application of the notifier is updating the display, i.e. adjusting all affected
views of the text that are currently displayed to the new state of the text (the model). We shall come
back to this important matter when discussing text frames in Section 5.3.

In concluding this Section it is worth noting that the groups of operations just discussed have been
designed to be equally useful for interactive text editors as for programmed text
generators/manipulators.

 57

5.1.3. Accessing Text

Let us now turn to the third and last group of operations on texts: Accessing that is reading and
writing. According to the principle of separation of concerns, one of our guiding principles, the
access mechanism operates on extra aggregates called readers and writers rather than on texts
themselves.

Readers are used to read texts sequentially. Their type is declared as
Reader = RECORD
 eot: BOOLEAN; (*end of text*)
 fnt: Fonts.Font;
 col, voff: INTEGER
END;

A reader must first be opened at the desired position in the text before it can then be moved
forward incrementally by reading character-by-character. Its state variables indicate end-of-text and
expose the looks of the character last read.

The corresponding operators are
PROCEDURE OpenReader (VAR R: Reader; T: Text; pos: INTEGER);
PROCEDURE Read (VAR R: Reader; VAR ch: CHAR);

Procedure OpenReader sets up a reader R at position pos in text T. Procedure Read returns the
character at the current position of R and makes R move to the next position.

The current position of reader R is returned by a call to the function Pos:
PROCEDURE Pos (VAR R: Reader): INTEGER;

In Chapter 3 we learned that commands plus parameter lists are often embedded in ordinary texts.
When interpreting such commands, the underlying text appears as a sequence of tokens like name,
number, special symbol etc. much rather than as a sequence of characters. Therefore, we have
adopted the well-known concepts of syntax and scanning from the discipline of compiler
construction, including functional support. The Oberon scanner recognizes tokens of some
universal classes. They are name, string, integer, real, longreal, and special character.

The exact syntax of universal Oberon tokens is:

token = name | string | integer | real | spexchar.

name = ident { "." ident }.ident = letter { letter | digit }.
string = """ { char } """.
integer = ["+"|"-"] number.
real = ["+"|"-"] number "." number ["E" ["+"|"-"] number].
number = digit { digit }.
spexchar = any character except letters, digits, space, tab, and carriage-return.

Type Scanner is defined correspondingly as
Scanner = RECORD (Reader)
 nextCh: CHAR;
 line: INTEGER;
 class: INTEGER;
 i: INTEGER;
 x: REAL;
 c: CHAR;
 len: INTEGER;
 s: ARRAY 32 OF CHAR
 END;

This type is actually a variant record type with class as discriminating tag. Depending on its class
the value of the current token is stored in one of the fields i, x, c, or s. len gives the length of s,

 58

nextCh typically exposes the character terminating the current token, and line counts the number of
lines scanned.

The operations on scanners are
PROCEDURE OpenScanner (VAR S: Scanner; T: Text; pos: INTEGER);
PROCEDURE Scan (VAR S: Scanner);

They correspond exactly to their counterparts OpenReader and Read respectively.

Writers are dual to readers. They serve the purpose of creating and extending texts. However,
again, they do not operate on texts directly. Rather, they act as self-contained aggregates,
continuously consuming and buffering textual data.

The formal declaration of type Writer resembles that of type Reader:
Writer = RECORD
 buf: Buffer;
 fnt: Fonts.Font;
 col, voff: INTEGER
END;

buf is an internal buffer containing the consumed data. fnt, col, and voff specify the current looks for
the next character consumed by this writer.

The following procedures constitute the Writer API:
PROCEDURE OpenWriter (VAR W: Writer);
PROCEDURE SetFont (VAR W: Writer; fnt: Fonts.Font);
PROCEDURE SetColor (VAR W: Writer; col: INTEGER);
PROCEDURE SetOffset (VAR W: Writer; voff: INTEGER);

Procedure OpenWriter opens a new writer with an empty buffer. Procedures SetFont, SetColor, and
SetOffset set the respective current look. For example, SetFont(W, fnt) is equivalent with W.fnt :=
fnt. These procedures are included because fnt, col, and voff are read-only for clients.

The question may arise how data is produced and transferred to writers. The answer is a set of
writer procedures, each of them handling an individual data type:

PROCEDURE Write (VAR W: Writer; ch: CHAR);
PROCEDURE WriteLn (VAR W: Writer);
PROCEDURE WriteString (VAR W: Writer; s: ARRAY OF CHAR);
PROCEDURE WriteInt (VAR W: Writer; x, n: INTEGER);
PROCEDURE WriteHex (VAR W: Writer; x: INTEGER);
PROCEDURE WriteReal (VAR W: Writer; x: REAL; n: INTEGER);
PROCEDURE WriteRealFix (VAR W: Writer; x: REAL; n, k: INTEGER);
PROCEDURE WriteClock(VAR W: Writer; d: INTEGER);

The following is schematic fragment of a client program that creates textual output:

open writer; set desired font;
REPEAT
 process;
 write result to writer;
 append writer buffer to output text
UNTIL ended

Of course, writers can be reused. For example, a single global writer is typically shared by all of the
procedures within a module. In this case, the writer needs to be opened just once at module loading
time.

Typically, however, accessing aggregates are of a transient nature and are bound to a certain
activity, which manifests itself in their allocation on the stack without any possibility of referencing
them from the outside of the activity, in contrast to the underlying texts that are allocated on the
system heap and have a much longer life time.

 59

Let us summarize: Text in Oberon is a powerful abstract data type with intrinsic operations from
three areas: Loading/storing, editing, and accessing (reading/writing). The latter two areas on their
part introduce further abstract types called Buffer, Reader, Scanner, and Writer. In combination
they guarantee a clean separation of very different concerns. The benefits of such a rigorous
decoupling are numerous. For example, it makes it possible to freely choose (and vary) the
granularity at which a text and its views are updated. Finally, an after-method is used to allow
context-dependent post-processing of editing operations. It is used primarily for preserving
consistency between text models and their views.

5.2. Text Management
The art and challenge of modularization lie in finding an effective decomposition of a topic into
modules with relatively thin interfaces or, in other words, into modules with a great potential for
information hiding. Text systems provide a welcome opportunity of an exercise. A closer analysis
immediately leads to the following separate concerns corresponding to the components Model,
View and Controller of the MVC scheme: Text management, text rendering, and text editing. If we
combine View and Controller and add an auxiliary font handling module Fonts, we arrive at the
following three-module import hierarchy:

Module Object type Service

TextFrames Frame Text rendering and editing
Texts Text Text management
Fonts Font Font management

Note that, in contrast to the display-subsystem, the associated object types are not connected
hierarchically here.

Separate Sections 5.3 and 5.4 will be devoted to modules TextFrames and Fonts respectively. In
the current Section we focus on module Texts. Regarding it as a model of the abstract data type
Text presented in the previous Section, its definition is congruent with the specification of the
abstract data type itself, and we need not repeat it here.

The main topics of this Section are internal representation and file representation of texts. We first
emphasize that the internal representation of a text is a completely private matter of module Texts
that is encapsulated and hidden from clients. In particular, the representation could be changed at
any time without invalidating any single client. In principle, the same is true for the file
representation. However, stability is of paramount importance here because files serve the
additional purposes of backing up text on external media and of porting text to other environments.

Our choice of an internal representation of text was determined by a catalogue of requirements and
desired properties. The wish list looks like this:

 1.) lean data structure
 2.) closed under editing operations
 3.) efficient editing operations
 4.) efficient sequential reading
 5.) efficient direct positioning
 6.) super efficient internalizing
 7.) preserving file representations

With the exception of 5.), we found these requirements met perfectly by an adequately generalized
variant of the piece list technique that was originally used for Xerox PARC's Bravo text editor and
also for ETH's former document editors Dyna and Lara [Gutknecht]. The original piece list is able to
describe a vanilla text without looks. It is based on two principles:

1.) A text is regarded as a sequence of pieces, where a piece is a section of a text file consisting of
a sequence of contiguous characters.

2.) Every piece is represented by a descriptor (f, pos, len), where the components designate a file,
a starting position, and a length respectively. The whole text is represented as a list of piece

 60

descriptors (in short: piece list). The editing operations operate on the piece list rather than on the
pieces themselves.

Figure 5.1 Piece chain representing a text

Figure 5.1 shows a typical piece list representing (the current state of) a text. Investigating the
effects of the basic editing operations delete and insert on the piece list, we end up with these
algorithms:

delete stretch [beg, end) of text = BEGIN
 split pieces at beg and at end;
 remove piece descriptors from beg to end from the chain
END

insert stretch of text at pos = BEGIN
 split piece at pos;
 insert piece descriptors representing the stretch at pos
END

Of course, splitting is superfluous if the desired splitting point happens to coincide with the
beginning of a piece. Figures 5.3 and 5.4 show the resulting piece list after a delete and an insert-
operation respectively.

piece 1

hour day, intelligent life appeared
within the last few seconds

file f
pos 765
len 60

piece 2

file g
pos 210
len 9

piece 3

file h
pos 312
len 64

piece 4

file i
pos 0
len 1

if the entire life of our planet were represented by one twe

nty-four-

sentinel (0X)

If the entire life of our planet were represented by one twenty-four-hour day,
intelligent life appeared within the last few seconds

 61

Figure 5.2 Piece chain after delete operation

Figure 5.3 Piece chain after insert operation

Checking our wish list of above we immediately recognize the requirements 1.), 2.), and 3.) as met.
Requirement 4.) is also met under the assumption of an efficient mechanism for direct positioning in
files. Requirement 6.) can be checked off because the piece list initially consists of a single piece
spanning the entire text file. Finally, requirement 7.) is met simply because the operations do not
affect file representations at all.

In Oberon we adapted the piece list technique to texts with looks ("rich texts"). Formally, we first
define a run as a stretch of text whose characters show identical looks. Now, we require the piece
list to subordinate itself to the run structure. This obviously means that every piece needs to be
contained within a single run. Figure 5.4 visualizes such a compliant piece list representing a text
with varying looks. There are only two new aspects compared to the original version of the piece list
discussed above: An additional operation to change looks and the initial state of the piece chain.

change looks in a stretch [beg, end) of text = BEGIN
 split pieces at beg and at end;

piece 1

file f
pos 765
len 32

piece 2

file i
pos 155
len 40

piece 3

file f
pos 798
len 24

piece 0

file i
pos 0
len 1

if the entire life of our planet were represented by one

, from its origin to the present moment

internal file (0X)

If the entire life of our plane, from its origin to the present moment, were
represented by one day, intelligent life appeared within the last few seconds

piece 4

file h
pos 317
len 59

piece 1

hour, intelligent life appeared within
the last few seconds

file f
pos 765
len 57

piece 2

file h
pos 317
len 59

piece 0

file i
pos 0
len 1

if the entire life of our planet were represented by one

internal file (0X)

If the entire life of our planet were represented by one day, intelligent life
appeared within the last few seconds

 62

 change looks in piece descriptors from beg to end in the chain
END

This shows that requirements 2.) and 3.) in the wish list are still satisfied.

Figure 5.4 Generalized piece chain representing a text with looks

Initially, the pieces are identical with runs, and the number of elements in the piece list is equal to
the number of runs. Because this number is typically small in comparison with the total number of
characters in a text requirement 6.) is still met.

We conclude that the new aspects do not invalidate the positive rating given above to the piece
technique with regard to requirements 1.), 2.), 3.), 4.), 6.), and 7.) in our wish list. However, the
requirement of efficient direct positioning remains. The problem is the necessity to scan through the
piece list sequentially in order to locate the piece that contains the desired position. We investigated
different solutions of this efficiency problem. They are based on different data structures connecting
the piece descriptors, among them a piece tree and a variant of the piece list featuring an additional
long-distance link like in a skip-list.

Eventually, we decided in favor of a simpler solution that we can easily justify by pointing out that
the typical editing scenario is zooming into a local region of text, i.e. positioning at an arbitrary
location once and subsequently positioning at locations in its immediate neighborhood many times.
Therefore, an appropriate solution is caching the most recently calculated values (pos, piece) of the
translation map. Of course, this does not solve the problem of cache misses. Notice, however, that
this problem is acute only in the case of extremely long piece lists that do not occur in ordinary texts
and editing sessions.

We shall now illustrate the piece technique in detail at the example of two important but basic
operations: Insert and read. Let us start with an overview of the data types involved. Apart from
some auxiliary private variables marked with an arrow, the types Text, Buffer, and Reader are
already familiar to us from the previous Section. Type Piece is completely private and hidden from
the clients.

Text = POINTER TO TextDesc;

Notifier = PROCEDURE (T: Text; op, beg, end: INTEGER);

TextDesc = RECORD
 len: INTEGER;
 notify: Notifier;
 → trailer: Piece;
 → org: INTEGER;
 → pce: Piece
END;

I have trained that man, says the laboratory rat, so that every time I press this lever
he gives me food

lever he gives me food

so that every time I press this

, says the laboratory rat,

I have trained that man

file h
pos 317
len 59
font 10i

piece 1

file f
pos 100
len 23
font 10i

piece 2

file i
pos 155
len 40
font 10

piece 3

file f
pos 798
len 24
font 10i

piece 0

file i
pos 0
len 1

piece 4

 63

Buffer = POINTER TO BufDesc;

BufDesc = RECORD
 len: INTEGER;
 → header, last: Piece
END;

Reader = RECORD
 eot: BOOLEAN;
 fnt: Fonts.Font;
 col, voff: INTEGER;
 → ref: Piece;
 → org, off: INTEGER;
 rider: Files.Rider
 END;

→ Piece = POINTER TO PieceDesc;

→ PieceDesc = RECORD
 f: Files.File;
 off, len: INTEGER;
 fnt: Fonts.Font;
 col, voff: INTEGER;
 prev, next: Piece
 END;

As depicted in Figure 5.1, the piece list is implemented as a doubly linked list with a sentinel piece
closing it to a ring. The field trailer in type TextDesc points to the sentinel piece. Fields org and pce
implement a translation cache consisting of merely one entry (org, pce). It links a position org with a
piece pce. The fields header and last in type Buffer refer to the implementation of buffers as piece
lists. They point to the first and last piece descriptors respectively. Finally, the fields ref, org, and off
in type Reader memorize the current piece, its origin, and the current offset within this piece.

The fields f, off, and len in type Piece specify the underlying file, starting position in the file, and
length of the piece. fnt, col, and voff are its looks. Finally prev and next are pointers to the previous
piece and to the next piece in the list respectively.

FindPiece and SplitPiece are auxiliary procedures that are used by almost all piece-oriented
operations.

 PROCEDURE FindPiece (T: Text; pos: INTEGER; VAR org: INTEGER; VAR p: Piece);
 VAR p: Piece; porg: INTEGER;
 BEGIN p := T.pce; porg := T.org;
1) IF pos >= porg THEN
 WHILE pos >= porg + p.len DO INC(porg, p.len); p := p.next END
2) ELSE p := p.prev; DEC(porg, p.len);
 WHILE p < porg DO p := p.prev; DEC(porg, p.len) END
 END;
3) T.pce := p; R.org := porg; (*update cache*)
 pce := p; org := porg
 END FindPiece;

Explanations (referring to the line numbers in the above code excerpt)

1) search to the right (next)
2) search to the left (prev)
3) update cache if more than 50 pieces traversed

1) PROCEDURE SplitPiece (p: Piece; off: INTEGER; VAR pr: Piece);
 VAR q: Piece;
 BEGIN
2) IF off > 0 THEN NEW(q);
 q.fnt := p.fnt; q.col := p.col; q.voff := p.voff;
 q.len := p.len - off;
 q.f := p.f; q.off := p.off + off;

 64

 p.len := off;
3) q.next := p.next; p.next := q;
4) q.prev := p; q.next.prev := q;
 pr := q
 ELSE pr := p
 END
 END SplitPiece;

Explanations:

1) return right part piece pr after split
2) generate new piece only if remaining length > 0
3) insert new piece in forward chain
4) insert new piece in backward chain

Procedure Insert handles text insertion. It operates on a buffer that contains the stretch of text to be
inserted:

 PROCEDURE Insert (T: Text; pos: INTEGER; B: Buffer);
 VAR pl, pr, p, qb, qe: Piece; org, end: INTEGER;
 BEGIN
 1) FindPiece(T, pos, org, p); SplitPiece(p, pos - org, pr);
 2) IF T.org >= org THEN
 T.org := org - p.prev.len; T.pce := p.prev
 END;
 pl := pr.prev; qb := B.header.next;
 3) IF (qb # NIL) & (qb.f = pl.f) & (qb.off = pl.off + pl.len)
 & (qb.fnt = pl.fnt) & (qb.col = pl.col) & (qb.voff = pl.voff) THEN
 pl.len := pl.len + qb.len; qb := qb.next
 END;
 IF qb # NIL THEN qe := B.last;
4) qb.prev := pl; pl.next := qb; qe.next := pr; pr.prev := qe
 END;
5) T.len := T.len + B.len; end := pos + B.len;
6) B.last := B.header; B.last.next := NIL; B.len := 0;
7) T.notify(T, insert, pos, end)
 END Insert;

Explanations:

1) split piece to isolate point of insertion
2) adjust cache if necessary
3) merge pieces if possible
4) insert buffer
5) update text length
6) empty buffer
7) notify

Procedure Read implements sequential reading of characters in texts. It operates on a text reader:
 PROCEDURE Read (VAR R: Reader; VAR ch: CHAR);
 BEGIN
 1) Files.Read(R.rider, ch); R.fnt := R.ref.fnt; R.col := R.ref.col; R.voff := R.ref.voff;
 INC(R.off);
 2) IF R.off = R.ref.len THEN
 3) IF R.ref.f = WFile THEN R.eot := TRUE END;
 R.org := R.org + R.off; R.off := 0;
 4) R.ref := R.ref.next; R.org := R.org + R.off; R.off := 0;
 5) Files.Set(R.rider, R.ref.f, R.ref.off)
 END
 END Read;

Explanations:

 65

 1) read character from file and update looks in reader
 2) if piece boundary reached
 3) check if sentinel piece reached
 4) move reader to next piece
 5) position file rider

Procedure Read is typically used as a primitive by text scanners and in particular by the built-in
scanner Scan for the recognition of universal tokens, as they were defined in the previous section.
Scanning is a rather complex operation that, for example, includes the conversion of a sequence of
digits into an internal floating-point representation and vice-versa. Scanning a real number involves
recognizing m and d, and computing x = m*10d. This is done using procedure Ten(d) computing 10d
by repeated multiplication maintaining the invariant t * pn = 10n0, where n0 is the initial value of n.

PROCEDURE Ten(n: INTEGER): REAL;
 VAR t, p: REAL;
BEGIN t := 1.0; p := 10.0;
 WHILE n > 0 DO
 IF ODD(n) THEN t := p * t END ;
 p := p*p; n := n DIV 2
 END ;
 RETURN t
END Ten;

Writing a real number in decimal form is more complicated. It involves the computation of m and d
from x = n*2e so that x = m*10d with 1.0 ≤ m < 10.0. First, e is obtained with the standard function
UNPK(x, e), then d is computed (from the relationship 10k = 2k*log(10)) as d = e/log2(10). In order to
avoid a real division for obtaining d, we use the approximation 1.0 / log2(10) = 77 DIV 256, and then
compute x := x / Ten(e) or x := x * Ten(-e). Further details are to be taken from the listings of
WriteReal and WriteRealFix.

In spite of its apparent simplicity the piece list technique interoperates with other system
components in quite a subtle way. For example, after a while of editing, there are typically
numerous cross references between the documents involved. In other words, pieces of one
document may point to foreign files that is to files that were originally associated with other
documents. As a consequence, the file system must either employ some smart garbage collection
algorithm or not recycle file pages at all, even if a new version of a file of the same name has been
created in the meantime.

A problem of another kind, again affecting the file system, arises if, say, a single text line is
composed of several small pieces. Then, reading this line sequentially may necessitate several
jumps to different positions in different files at a high pace. Depending on the quality of the file
buffering mechanism, this may lead to significantly hesitant mouse tracking.

And finally, typed characters that are supposed to be inserted into a text need to be stored on the
so-called keyboard file. For this (continuously growing) file, several readers and one writer must be
allowed to coexist concurrently.

As a consequence, the following qualities of the underlying file system are mandatory for the piece
technique to work properly:

1. Once a file page is allocated it must not be reused (until system restart).
2. A versatile file buffering mechanism supporting multiple buffers per file is required.
3. Files must be allowed to be open in read mode and in write mode simultaneously.

The format of text sections in files obeys a set of syntactical rules (productions) that can easily be
specified in EBNF-notation:

TextSection = ident header {char}.
header = type offset run {run} null length.
run = font [name] color offset length.

 66

In the TextSection production ident is an identifier for text blocks. In the header production type is a
type-discriminator, offset is the offset to the character part, run is a run-descriptor, null is a null-
character, and length is the length of the character sequence. In the run production font, color, and
offset are specifications of looks, and length is the run-length. In order to save space, font names
are coded as ordinal numbers within a text section. If and only if a font appears for the first time in a
text block it is followed by the actual font name.

Let us conclude this Section with two side-remarks and a summary.

Remarks:

For compatibility reasons, plain ASCII-files are accepted as text files as well. They are mapped
to texts consisting of a single run with standard looks.

Internalizing a text section from a file is extremely efficient because it is obviously sufficient to
read the header and translate it into the initial state of the piece list.

Summary: The mechanism used for the implementation of the abstract data type Text is completely
hidden from clients. It is a generalized version of the original piece list technique, adapted to texts
with looks. The piece list technique in turn is based on the principle of indirection: Operations
operate on descriptors of texts rather than on texts themselves. The benefits are efficiency and
non-destructive operations. However, the technique works properly only in combination with an
efficient (and reliable) garbage collector and a suitable file system.

5.3. Text Frames
The tasks of text frames are text rendering and user interaction. A text frame represents a text view
and a controller in the form of an interactive text editor. Technically, text frames are a subclass of
display frames and, as such, are objects with an open message interface of the kind explained in
Chapter 4.

The geometric layout of text frames is determined by two areas: A rectangle of contents and a
vertical scroll-bar along the left borderline. The type of text frames is a direct extension of type
Display.Frame:

 Frame = POINTER TO FrameDesc;

 FrameDesc = RECORD (Display.FrameDesc)
 text: Texts.Text;
 org, col, lsp: INTEGER;
 left, right, top, bot: INTEGER;
 markH, time: INTEGER;
 hasCar, hasSel, hasMark: BOOLEAN;
 carloc: Location;
 selbeg, selend: Location
 END;

Fields text and org specify the text part to be displayed, the former referring to the underlying text
and the latter designating the starting position of the displayed part. Fields col and lsp are rendering
parameters. They specify the frame's background color and the line spacing. Fields left, right, top,
and bot are margins. They determine the rectangle of contents. mark indicates whether there is a
position marker, which is a small horizontal bar indicating the position of the displayed part relative
to the whole text. markH represents its location within the text frame.

Caret and selection are two important features associated with a text frame. The caret indicates a
focus, and it serves as an implicit "point of insertion" for placing consumed characters (for example
from the keyboard). The selection is a stretch of displayed text. Additionally it serves as a
parameter for various operations and commands, among them delete and change looks. The state
and location of the caret is given by the variables car and carloc respectively. Analogously, the
state of the selection and its begin and end are reflected by the fields sel, selbeg, and selend in the
frame descriptor. Field time is a time stamp on the current selection.

 67

In principle, caret and selection could be regarded as ingredients of the underlying text (the model)
equally well. However, we deliberately decided to associate these features with frames (views) in
order to get increased flexibility. For example, two different selections in adjacent viewers
displaying the same text are normally interpreted as one extensive selection across their span.

The auxiliary type Location summarizes information about a location in a text frame. Its definition is:
 Location = RECORD
 org, pos, dx, x, y: INTEGER
 END;

x, y specify the envisioned location relative to the text frame's origin, and dx is the width of the
character at this location. pos is the corresponding position in the text and org is the origin position
of the corresponding text line.

The following is a simplified version of the message handler employed by text frames. It fully
determines the behavior and capabilities of text frames.

 PROCEDURE Handle* (F: Display.Frame; VAR M: Display.FrameMsg);
 VAR F1: Frame; buf: Texts.Buffer;
 BEGIN
 CASE M OF
 Oberon.InputMsg:
1) IF M.id = Oberon.track THEN Edit(F(Frame), M.X, M.Y, M.keys)
 ELSIF M.id = Oberon.consume THEN
2) IF F(Frame).hasCar THEN Write(F(Frame), M.ch, M.fnt, M.col, M.voff) END
 END |
 Oberon.ControlMsg:
3) IF M.id = Oberon.defocus THEN Defocus(F(Frame))
4) ELSIF M.id = Oberon.neutralize THEN Neutralize(F(Frame))
 END |
5) Oberon.SelectionMsg:
 GetSelection(F(Frame), M.text, M.beg, M.end, M.time) |
7) Oberon.CopyMsg: Copy(F(Frame), F1); M.F := F1 |
 MenuViewers.ModifyMsg: Modify(F(Frame), M.id, M.dY, M.Y, M.H) |
8) CopyOverMsg: CopyOver(F(Frame), M.text, M.beg, M.end) |
9) UpdateMsg: IF F(Frame).text = M.text THEN Update(F(Frame), M) END
 END
 END Handle;

Explanations:

 1) Mouse tracking message: Call built-in editor immediately
 2) Consume message: In case of valid caret insert character
 3) Defocus message: Remove caret
 4) Neutralize message: Remove caret and selection
 5) Selection message: Return current selection with time stamp
 6) Copyover message: Copy given stretch of text to caret
 7) Copy message: Create a copy (clone)
 8) Modify message: Translate and change size
 9) Update message: If text was changed then update display

We recognize again our categories of universal messages introduced in Chapter 4, Table 4.6:
Messages in lines 1) and 2) report about user interactions. Messages in 3), 4), 5), 6), and 7) specify
generic operations. Messages in 8) require a change of location or size. Messages of the latter kind
arrive from the ancestor menu viewer via delegation. They are generated by the interaction handler
and preprocessed by the original viewer message handler. Finally, messages in line 9) report about
changes of contents.

The text frame handler is encapsulated in a module called TextFrames. This module exports the
above introduced types Frame (text frame) and Location, as well as the procedure Handle.
Furthermore, it exports type UpdateMsg to report on changes made to a displayable text.

 68

UpdateMsg = RECORD (Display.FrameMsg)
 id: INTEGER;
 text: Texts.Text;
 beg, end: INTEGER
 END;

Field id names one of the operators replace, insert, or delete. The remaining fields text, beg, and
end restrict the change to a range. Additional procedures generate a new standard menu text frame
and contents text frame respectively:

 PROCEDURE NewMenu (name, commands: ARRAY OF CHAR): Frame;
 PROCEDURE NewText (text: Texts.Text; pos: INTEGER): Frame;

This completes the minimum definition of module TextFrames. In addition, this module exports a
set of useful service procedures supporting the composition of custom handlers from elements of
the standard handler:

 PROCEDURE Edit (F: Frame; X, Y: INTEGER; Keys: SET);
 PROCEDURE Write (F: Frame; ch: CHAR; fnt: Fonts.Font; col, voff: INTEGER);
 PROCEDURE Defocus (F: Frame);
 PROCEDURE Neutralize (F: Frame);
 PROCEDURE GetSelection (F: Frame; VAR text: Texts.Text;
 VAR beg, end, time: INTEGER);
 PROCEDURE CopyOver (F: Frame; text: Texts.Text; beg, end: INTEGER);
 PROCEDURE Copy (F: Frame; VAR F1: Frame);
 PROCEDURE Modify (F: Frame; id, dY, Y, H: INTEGER);
 PROCEDURE Update (F: Frame; VAR M: UpdateMsg);

The module also supports mouse tracking inside text frames:
 PROCEDURE TrackCaret (F: Frame; X, Y: INTEGER; VAR keysum: SET);
 PROCEDURE TrackSelection (F: Frame; X, Y: INTEGER; VAR keysum: SET);
 PROCEDURE TrackLine (F: Frame; X, Y: INTEGER; VAR org: INTEGER; VAR keysum: SET);
 PROCEDURE TrackWord (F: Frame; X, Y: INTEGER; VAR pos: INTEGER; VAR keysum: SET);

Let us now take a closer look at the implementation of some selected operations. For this purpose,
we must first explain the notion of line descriptor that is used to optimize the operation of locating
positions within text frames.

Line = POINTER TO LineDesc;

LineDesc = RECORD
 len, wid: INTEGER;
 eot: BOOLEAN;
 next: Line
END;

Each line descriptor provides detailed information about a single line of text that is currently
displayed: len is the number of characters on the line, wid is the line width, eot indicates
terminating line, and next points to the next line descriptor.

Text frames maintain a private data structure called line list that describes the list of text lines
displayed:

 Frame = POINTER TO FrameDesc;

 FrameDesc = RECORD (Display.FrameDesc)
 text: Texts.Text;
 org, col, lsp: INTEGER;
 left, right, top, bot: INTEGER;
 markH, time: INTEGER;
 hasChar, hasSel, hasMark: BOOLEAN;
 carloc, selbeg, selend: Location;
 → trailer: Line
 END;

 69

Field trailer represents a sentinel element that closes the line list to a ring.

The line list contains useful summary information about the current contents of the text frame. It can
be used beneficially by some related data types, for example by type Location that was introduced
earlier:

 Location = RECORD
 org, pos, dx, x, y: INTEGER;
 → lin: Line
 END;

The built-in editor procedure Edit is a worthwhile part to look at in more detail. It is called by the task
scheduler to handle mouse events within a text frame. The following code excerpt shows nicely
how the different components of the text system interoperate.
 PROCEDURE Edit* (F: Frame; X, Y: INTEGER; Keys: SET);
 VAR M: CopyOverMsg;
 text: Texts.Text;
 buf: Texts.Buffer;
 v: Viewers.Viewer;
 loc0, loc1: Location;
 beg, end, time, pos: INTEGER;
 keysum: SET;
 fnt: Fonts.Font;
 col, voff: INTEGER;
 BEGIN
 IF X < F.X + Min(F.left, barW) THEN (*cursor is in scroll bar*)
 Oberon.DrawMouse(ScrollMarker, X, Y); keysum := Keys;
 IF Keys = {2} THEN (*ML, scroll up*)
 TrackLine(F, X, Y, pos, keysum);
 IF (pos >= 0) & (keysum = {2}) THEN
 RemoveMarks(F); Oberon.RemoveMarks(F.X, F.Y, F.W, F.H);
 Show(F, pos)
 END
 ELSIF Keys = {1} THEN (*MM*) keysum := Keys;
 REPEAT Input.Mouse(Keys, X, Y); keysum := keysum + Keys;
 Oberon.DrawMouse(ScrollMarker, X, Y)
 UNTIL Keys = {};
 IF ~(keysum = {0, 1, 2}) THEN
 IF 0 IN keysum THEN pos := 0
 ELSIF 2 IN keysum THEN pos := F.text.len - 100
 ELSE pos := (F.Y + F.H - Y) * (F.text.len) DIV F.H
 END ;
 RemoveMarks(F); Oberon.RemoveMarks(F.X, F.Y, F.W, F.H);
 Show(F, pos)
 END
 ELSIF Keys = {0} THEN (*MR, scroll down*)
 TrackLine(F, X, Y, pos, keysum);
 IF keysum = {0} THEN
 LocateLine(F, Y, loc0); LocateLine(F, F.Y, loc1);
 pos := F.org - loc1.org + loc0.org;
 IF pos < 0 THEN pos := 0 END ;
 RemoveMarks(F); Oberon.RemoveMarks(F.X, F.Y, F.W, F.H);
 Show(F, pos)
 END
 END
 ELSE (*cursor is in text area*)
 Oberon.DrawMouseArrow(X, Y);
 IF 0 IN Keys THEN (*MR: select*)
 TrackSelection(F, X, Y, keysum);
 IF F.hasSel THEN
 IF keysum = {0, 2} THEN (*MR, ML: delete text*)
 Oberon.GetSelection(text, beg, end, time);

 70

 Texts.Delete(text, beg, end, TBuf);
 Oberon.PassFocus(Viewers.This(F.X, F.Y)); SetCaret(F, beg)
 ELSIF keysum = {0, 1} THEN (*MR, MM: copy to caret*)
 Oberon.GetSelection(text, beg, end, time);
 M.text := text; M.beg := beg; M.end := end;
 Oberon.FocusViewer.handle(Oberon.FocusViewer, M)
 END
 END
 ELSIF 1 IN Keys THEN (*MM: call*)
 TrackWord(F, X, Y, pos, keysum);
 IF (pos >= 0) & ~(0 IN keysum) THEN Call(F, pos, 2 IN keysum) END
 ELSIF 2 IN Keys THEN (*ML: set caret*)
 Oberon.PassFocus(Viewers.This(F.X, F.Y));
 TrackCaret(F, X, Y, keysum);
 IF keysum = {2, 1} THEN (*ML, MM: copy from selection to caret*)
 Oberon.GetSelection(text, beg, end, time);
 IF time >= 0 THEN
 NEW(TBuf); Texts.OpenBuf(TBuf);
 Texts.Save(text, beg, end, TBuf); Texts.Insert(F.text, F.carloc.pos, TBuf);
 SetSelection(F, F.carloc.pos, F.carloc.pos + (end - beg));
 SetCaret(F, F.carloc.pos + (end - beg))
 ELSIF TBuf # NIL THEN
 NEW(buf); Texts.OpenBuf(buf);
 Texts.Copy(TBuf, buf); Texts.Insert(F.text, F.carloc.pos, buf);
 SetCaret(F, F.carloc.pos + buf.len)
 END
 ELSIF keysum = {2, 0} THEN (*ML, MR: copy looks*)
 Oberon.GetSelection(text, beg, end, time);
 IF time >= 0 THEN
 Texts.Attributes(F.text, F.carloc.pos, fnt, col, voff);
 IF fnt # NIL THEN Texts.ChangeLooks(text, beg, end, {0,1,2}, fnt, col, voff) END
 END
 END
 END
 END
 END Edit;

We see that the editing operation is determined by the first key pressed (primary key) and can then
be varied by “interclicking” that is, by clicking a secondary key while holding down the primary key.
As a convention, (inter)clicking all keys means cancelling the operation. Mouse clicks and
subsequent actions can now be summarized as follows:

1. In the scroll bar

primary key secondary key action

ML - scroll designated line to the top
MM - scroll proportional to mouse position
MM ML scroll to the end of the text
MM MR scroll to the beginning of the text

2. In the text area

primary key secondary key action

ML - set caret
ML MM copy selection to caret
ML MT copy looks
MM - call selected procedure
MR - select
MR ML delete selection
MR MM copy selection to caret

 71

In the text area the keys are interpreted according to their generic semantics:

left key = point key
middle key = execute key
right key = select key

Let us “zoom into” one of the editing operations, for example into TrackCaret.
 PROCEDURE TrackCaret (F: Frame; X, Y: INTEGER; VAR keysum: SET);
 VAR loc: Location; keys: SET;
 BEGIN
 1) IF F.trailer.next # F.trailer THEN
 2) LocateChar(F, X - F.X, Y - F.Y, F.carloc);
 3) FlipCaret(F);
 4) keysum := {};
 REPEAT
 Input.Mouse(keys, X, Y); keysum := keysum + keys;
 Oberon.DrawMouseArrow(X, Y);
 LocateChar(F, X - F.X, Y - F.Y, loc);
 IF loc.pos # F.carloc.pos THEN FlipCaret(F); F.carloc := loc; FlipCaret(F) END
 5) UNTIL keys = {};
 6) F.hascar := TRUE
 END
 END TrackCaret;

Explanations:

 1) guard guarantees non-empty line list
 2) locates the character pointed at
 3) drags caret to new location
 4) - 5) tracks mouse and drags caret accordingly
 6) set caret state

TrackCaret makes use of two auxiliary procedures FlipCaret and LocateChar. FlipCaret is used to
turn off or on the pattern of the caret. LocateChar is an important operation that is used to locate
the character at a given Cartesian position (x, y) within the frame.

 PROCEDURE FlipCaret (F: Frame);
 BEGIN
1) IF F.carloc.x < F.W THEN
2) IF (F.carloc.y >= 10) & (F.carloc.x + 12 < F.W) THEN
3) Display.CopyPattern(Display.white, Display.hook,
 F.X + F.carloc.x, F.Y + F.carloc.y - 8, Display.invert)
 END
 END
 END FlipCaret;

Explanations:

1) - 2) if there is room for drawing the caret
3) copy standard hook-shaped pattern to caret location in inverse video mode

 PROCEDURE LocateChar (F: Frame; x, y: INTEGER; VAR loc: Location);
 VAR R: Texts.Reader;
 patadr, pos, lim: INTEGER;
 ox, dx, u, v, w, h: INTEGER;
 1) BEGIN LocateLine(F, y, loc);
 2) lim := loc.org + loc.lin.len - 1;
 3) pos := loc.org; ox := F.left; dx := eolW;
 4) Texts.OpenReader(R, F.text, loc.org);
 5) WHILE pos # lim DO
 6) Texts.Read(R, nextCh);
 7) Fonts.GetPat(R.fnt.raster, nextCh, dx, u, v, w, h, patadr);

 72

 IF ox + dx <= x THEN
 INC(pos); ox := ox + dx;
 IF pos = lim THEN dx := eolW END
 ELSE lim := pos
 END
 END ;
 8) loc.pos := pos; loc.dx := dx; loc.x := ox
 END LocateChar;

Explanations:

 1) locate text line corresponding to at y
 2) set limit to the last actual character on this line
 3) start locating loop with first character on this line
 4) setup reader and read first character of this line
 5) - 7) scan through characters of this line until limit or x is reached
 6) get character width dx of current character
 8) return location found

Note that the need to read characters from the text (again) in LocateChar has its roots in the so-
called proportional fonts in which our rich texts are represented. We found that keeping character
widths is an unnecessary optimization thanks to the buffering capabilities of the underlying file
system. In the case of fixed-pitch fonts a simple division by the character width would be sufficient,
of course.

Finally, procedure LocateLine uses the line list to locate the desired text line without reading text at
all.

 PROCEDURE LocateLine (F: Frame; y: INTEGER; VAR loc: Location);
 VAR L: Line; org, cury: INTEGER;
 BEGIN org := F.org;
 1) org := F.org; L := F.trailer.next; cury := F.H - F.top - asr;
 2) WHILE (L.next # F.trailer) & (cury > y + dsr) DO
 org := org + L.len; L := L.next; cury := cury - lsp
 3) END;
 4) loc.org := org; loc.lin := L; loc.y := cury
 END LocateLine;

Explanations:

 1) start with first line in the frame
 2) - 3) traverse line chain until last line or y is reached
 4) return found line

After text editing text, rendering is our next topic. Let us pursue the case in that a user pressed the
point-key and then interclicked the middle key, corresponding to line 56) in procedure Edit.
Remember that notifier is called at the end of every editing operation and in particular at the end of
Texts.Insert. In case of standard text frames, the notifier simply broadcasts an update message into
the display space:

 PROCEDURE NotifyDisplay (T: Texts.Text; op, beg, end: INTEGER);
 VAR M: UpdateMsg;
 BEGIN M.id := op; M.text := T; M.beg := beg; M.end := end; Viewers.Broadcast(M)
 END NotifyDisplay;

Let us now take the perspective of a text frame receiving an update message. Looking at line 9) in
the text frame handler, we see that procedure Update is called, which in turn calls procedure Insert
in TextFrames:

 PROCEDURE Insert (F: Frame; beg, end: INTEGER);
 VAR R: Texts.Reader; L, L0, l: Line;
 org, len, curY, botY, Y0, Y1, Y2, dY, wid: INTEGER;
 BEGIN

 73

 IF beg < F.org THEN F.org := F.org + (end - beg)
 ELSE
 1) org := F.org; L := F.trailer.next; curY := F.Y + F.H - F.top - asr;
 WHILE (L # F.trailer) & (org + L.len <= beg) DO
 org := org + L.len; L := L.next; curY := curY - lsp
 2) END;
 3) IF L # F.trailer THEN
 botY := F.Y + F.bot + dsr;
 4) Texts.OpenReader(R, F.text, org); Texts.Read(R, nextCh);
 5) len := beg - org; wid := Width(R, len);
 6) ReplConst (F.col, F, F.X + F.left + wid, curY - dsr, L.wid - wid, lsp, 0);
 7) DisplayLine(F, L, R, F.X + F.left + wid, curY, len);
 8) org := org + L.len; curY := curY - lsp;
 Y0 := curY; L0 := L.next;
 WHILE (org <= end) & (curY >= botY) DO
 NEW(l);
 Display.ReplConst(F.col, F.X + F.left, curY - dsr, F.W - F.left, lsp, 0);
 DisplayLine(F, l, R, F.X + F.left, curY, 0);
 L.next := l; L := l;
 org := org + L.len; curY := curY - lsp
 9) END;
10) IF L0 # L.next THEN Y1 := curY;
11) L.next := L0;
 WHILE (L.next # F.trailer) & (curY >= botY) DO
 L := L.next; curY := curY - lsp
12) END;
 L.next := F.trailer;
 dY := Y0 - Y1;
 IF Y1 > curY + dY THEN
13) Display.CopyBlock
 (F.X + F.left, curY + dY + lsp - dsr, F.W - F.left, Y1 - curY - dY,
 F.X + F.left, curY + lsp - dsr,
 0);
 Y2 := Y1 - dY
 ELSE Y2 := curY
 END;
14) curY := Y1; L := L0;
 WHILE curY # Y2 DO
 Display.ReplConst(F.col, F.X + F.left, curY - dsr, F.W - F.left, lsp, 0);
 DisplayLine(F, L, R, F.X + F.left, curY, 0);
 L := L.next; curY := curY - lsp
15) END
 END
 END
 END;
16) UpdateMark(F)
 END Insert;

Some explanations:

 1) - 2) search line where inserted part starts
 3) if it is displayed in this viewer
 4) setup reader on this line
 5) get width of unaffected part of line (avoid touching it)
 6) clear remaining part of line
 7) display new remaining part of line
 8) - 9) display newly inserted text lines
10) if it was not a one line update
11) - 12) skip overwritten text lines
13) use fast block move to adjust reusable lines
14) - 15) redisplay previously overwritten text lines
16) adjust position marker

 74

Special care needs to be exercised in the implementation to avoid "flickering" and to minimize
processing time. Concretely, the following measures are taken for this purpose:

1.) Avoid writing the same data again.
2.) Keep the number of newly rendered text lines at a minimum.
3.) Use raster operations (block moves) to adjust reusable displayed lines.

Of course, the rules governing the rendering and formatting process crucially influence the
complexity of procedures like Insert. For text frames we have consciously chosen the simplest
possible set of formatting rules. They can be summarized as:

1.) For a given text frame the distance between lines is constant.
2.) There are no implicit line breaks.

It is exactly this set of rules that makes it possible to display a text line in one pass. Two passes are
inevitable if line distances have to adjust to font sizes or if lines must be broken implicitly.

Updating algorithms make use of the following one-pass rendering procedures Width and
DisplayLine:

 PROCEDURE Width (VAR R: Texts.Reader; len: INTEGER): INTEGER;
 VAR patadr, pos, ox, dx, x, y, w, h: INTEGER;
 1) BEGIN pos := 0; ox := 0;
 WHILE pos < len DO
 Fonts.GetPat(R.fnt, nextCh, dx, x, y, w, h, pat);
 ox := ox + dx; INC(pos); Texts.Read(R, nextCh)
 2) END;
 3) RETURN ox
 END Width;

Explanations:

 1) - 2) scan through len characters of this line
 3) return accumulated width

Procedures Width and LocateChar are similar. Therefore the above comment about relying on the
buffering capabilities of the underlying file system applies to procedure Width equally well.

 PROCEDURE DisplayLine (F: Frame; L: Line;
 VAR R: Texts.Reader; X, Y, len : INTEGER);
 VAR patadr; NX, Xlim, dx, x, y, w, h: INTEGER;
 1) BEGIN NX := F.X + F.W; Xlim := NX - 40;
 2) WHILE (nextCh # CR) & ((nextCh > " ") OR (X < Xlim)) & (R.fnt # NIL) DO
 3) Fonts.GetPat(R.fnt, nextCh, dx, x, y, w, h, patadr);
 4) IF (X + x + w <= NX) & (h # 0) THEN
 5) Display.CopyPattern(R.col, patadr, X + x, Y + y, Display.invert)
 6) END;
 7) X := X + dx; INC(len); Texts.Read(R, nextCh)
 8) END;
 9) L.len := len + 1; L.wid := X + eolW - (F.X + F.left);
10) L.eot := R.fnt = NIL; Texts.Read(R, nextCh)
 END DisplayLine;

Explanations:

 1) set right margin
 2) - 8) display characters of this line
 3) get width dx, box x, y, w, h, and pattern address of next character
 4) if there is enough space in the rectangle of contents
 5) display pattern
 7) jump to location of next character; read next character
 9) - 10) setup line descriptor

 75

Procedure DisplayLine is again similar to LocateChar, and the comment about relying on the file
system’s buffering capabilities applies once more. The principal difference between LocateChar
and Width on one hand and DisplayLine on the other hand is the fact that the latter accesses the
display screen physically. Therefore, possession of the screen lock is a tacit precondition for calling
DisplayLine.

A quick look at an auxiliary procedure that updates the position marker concludes our tour behind
the scenes of the text system:

 PROCEDURE UpdateMark (F: Frame);
 VAR oldH: INTEGER;
 BEGIN
 1) oldH := F.markH; F.markH := F.org * F.H DIV (F.text.len + 1));
 IF (F.mark > 0) & (F.left >= barW) & (F.markH # oldH) THEN
 2) Display.ReplConst(Display.white, F.X + 1, F.Y + F.H - 1 - oldH, markW, 1, Display.invert);
 3) Display.ReplConst(Display.white, F.X + 1, F.Y + F.H - 1 - F.markH, markW, 1, Display.invert)
 END
 END UpdateMark;

Explanations

 1) shows how the marker's position is calculated. Loosely spoken, the invariant is
distance from top of frame / frame height = text position of first character in frame / text length

 2) erase the old marker
 3) draw the new marker

And this in turn concludes our Section on text frames. Recapitulating the most important points: The
tasks of text editing (input oriented) and text rendering (output oriented) are combined in the
concept of text frames. Text frames constitute a subclass of display frames, and they are
implemented in a separate module called TextFrames. The implementation of TextFrames
accesses the displayed text exclusively via the “official” abstract interface of module Texts
discussed in Section 5.2. It maintains a private data structure of line lists to accelerate locating
requests. Text frames use simple formatting rules that allow super-efficient rendering of text in a
single pass. In particular, line spacing is fixed for every text frame. Therefore, different styles of a
base font are possible within a given text frame while different sizes are not.

Putting into relation the different extensions of type Display.Frame that we came across in Chapters
4 and 5, we obtain the type hierarchy as shown in Figure 5.5.

Figure 5.5 Extensions of tye Display.Frame

5.4. The Font Machinery
We saw in the previous Sections that Oberon texts support attribute specifications (“looks”) for
characters. Three different attributes are supported: font, color, and vertical offset. Let us first focus
on the font attribute. A font can be regarded as a style the standard character set is designed in.
Typically, an entire text is typeset in a single style, that is, there is one font per text. However,
sometimes, an author wants to emphasize titles or words by changing the size of the font or by
varying it to bold face or italics. In special texts, special characters like mathematical symbols or

Viewers.Track MenuViewers.Viewer

Viewers.Viewer TextFrames.Frame

Display.Frame

 76

other kinds of icons may occur. In even more complex documents, mathematical or chemical
formulae might flow within the text.

This generalized view leads us to a different interpretation of the notion of font. We can regard a
font as an indexed library of (graphical) objects, mostly but not necessarily glyphs. In the case of
ordinary characters it is natural to use the ASCII-code as an index, ending up with an interpretation
of text as sequence of pairs (library, index). Note that this is a very general view indeed that, in
principle, is equivalent with defining text as sequence of arbitrary objects.

The imaging model of characters provides two levels of abstraction. On the first level, characters
are black boxes specified by a set of metric data x, y, w, h, and dx. (x, y) is a vector from the current
point of reference on the base line to the origin of the box. w and h are width and height of the box,
and dx is the distance to the point of reference of the next character on the same base line. On the
second level of abstraction, a character is defined by a digital pattern or glyph that is to be rendered
into the box. Figure 5.6 visualizes this model of characters.

The additional two character attributes color and vertical offset appear now as parameters for the
character model. The vertical offset allows translating the glyph vertically and the color attribute
specifies the foreground color of the pattern.

Figure 5.6 The geometric character model

Good examples of procedures operating on the first level of abstraction are procedures LocateChar
and Width that we discussed in the previous Section, as well as text formatters for a remote printer.
In contrast, procedure DisplayLine operates on the second level.

The representation of characters as digital patterns is merely the last step in a complex font design
and rendering process. At the beginning is a generic description of the shape of each character in
the form of outlines and hints. Outlines are typically composed of straight lines and spline-curves.
Hints are included to assist the digitizer in its effort to faithfully map the filled character outlines into
the device raster. For example, hinting can guarantee consistency of serif shapes and stem widths
across an entire font within a text, independent of the relative positions of the characters with
respect to the grid lines. Automatic digitization produces digital patterns of sufficiently high quality
for printing media resolutions. For screen resolutions, however, we prefer to add a hand-tuning
step. This is the reason why digital patterns are not produced "on the fly" in Oberon.

Oberon's font management is encapsulated in module Fonts, with a low-level extension into the
module Display that we already know from Chapter 4. The interface to module Fonts is very simple
and narrow:

MODULE Fonts;

 TYPE Font = POINTER TO FontDesc;
 FontDesc = RECORD
 name: ARRAY 32 OF CHAR;;
 height, minX, maxX, minY, maxY: INTEGER;

x, y

w

h voff

dx

 77

 next: Font
 END;

 VAR Default: Font;

 PROCEDURE GetPat(fnt: Font; ch: CHAR; VAR dx, x, y, w, h, patadr: INTEGER);
 PROCEDURE This (name: ARRAY OF CHAR): Font;
 PROCEDURE Free;
END Fonts.

Variable name in type Font is the name of the underlying file. The variables height, minX, maxX,
minY, and maxY designate line height and summary metric data. Default is a system-wide default
font. It is installed at system loading time. GetPat delivers the geometric data for a given character
in a given font (see Figure 5.5). This is a procedure to internalize (load) a font from a file given by
its name. Free releases from storage fonts that are no longer needed.

Type Font should again be regarded as an abstract data type with two intrinsic operations This and
GetPat Thinking of the immutable nature of fonts, multiple internal copies of the same font are
certainly undesirable. Therefore, internalized fonts are cached in a private list that manifests itself in
a private field next in type FontDesc. The cache is maintained by the internalizing procedure This
according to the following scheme:

 search font in cache;
 IF found THEN return cached internalization
 ELSE internalize font; cache it
 END

The implementation of type Font did not raise many challenges. One, however, is an undesirable
side-effect of caching. The problem arises if a font is used for a limited time only. Because it is
referenced by the cache it will never be collected by the system's garbage collector. Two possible
solutions offer themselves: a) provide an explicit freeing operation and b) enforce some special
handling by the garbage collector based on a concept of "weak" pointers.

We conclude this Section with a formal specification of the font file format. Note that on the one
hand, the file format is completely private to the managing Fonts module and on the other hand, it
should be ultimately stable because it is probably used for long-term backup and for wide-range
data exchange across multi-system platforms.

This is an EBNF specification of the Oberon font file format:

 FontFile = ident header contents.
 header = abstraction family variant height minX maxX minY maxY.
 contents = nofRuns { beg end } { dx x y w h } { rasterByte }.

ident, abstraction, family, and variant are one-byte values indicating file identification, abstraction
(first level without raster bytes, second level with raster bytes), font family (Times Roman, Oberon,
etc.), and variant (bold face, italics etc.). The values height, minX, maxX, minY and maxY are two
bytes long each. They define in turn line height, minimum x-coordinate (of a box), maximum x-
coordinate, minimum y-coordinate, and maximum y-coordinate. All values in production contents
are two bytes long. nofRuns specifies the number of runs within the ASCII-code range (intervals
occupied without gaps) and every pair [beg, end) describes one run. The tuples (dx, x, y, w, h) are
the metric data of the corresponding characters (in their ASCII-code order), and the sequence of
rasterByte gives the total of raster information.

In summary, fonts in Oberon are indexed libraries of objects. The objects are descriptions of
character images in two levels of abstraction: As metric data of black boxes and as binary patterns
(glyphs). Type Font is an abstract data type with intrinsic operations to internalize and to get
character object data. Internalized fonts are cached in a private list.

5.5. The Edit toolbox

 78

We have seen that every text frame integrates an interactive text editor that we can regard as an
interpreter of a set of built-in commands (intrinsic commands). Of course, we would like to be able
to extend this set by custom editing commands (extrinsic commands). Adding additional editing
commands was indeed a worthwhile stress test for the underlying texts API. Module Edit is the
result of this effort. It is a toolbox of consisting of some standard extrinsic editing commands.

DEFINITION Edit;
 PROCEDURE Open; (*text viewer*)
 PROCEDURE Show; (*text*)
 PROCEDURE Locate; (*position*)
 PROCEDURE Search; (*pattern*)
 PROCEDURE Store; (*text*)

 PROCEDURE Recall; (*deleted text*)
 PROCEDURE CopyFont;
 PROCEDURE ChangeFont;
 PROCEDURE ChangeColor;
 PROCEDURE ChangeOffset;
END Edit.

The first group of commands in Edit is used to display, locate, and store texts or parts of texts. In
turn they open a text file and display it, open a program text and show the declaration of a given
object, locate a given position in a displayed text (main application: locating an error found by the
compiler), search a pattern, and store the current state of a displayed text. Commands in the next
group are related with editing. They allow restoring of the previously deleted part of text, copying a
font attribute to the current text selection, and change attributes of the current text selection. Note
that the commands CopyFont, ChangeFont, ChangeColor, and ChangeOffset are extrinsic
variations of the intrinsic copy-look operation. The implementations of the toolbox commands are
given in the Appendix.

References
[Gutknecht] J. Gutknecht, "Concept of the Text Editor Lara",

 Communications of the ACM, Sept. 1985, Vol.28, No. 9.

[Teitelman] W. Teitelman, "A tour through Cedar",
 IEEE Software, 1, (2), 44-73 (1984).

 79

6 The module loader

6.1. Linking and loading
When the execution of a command M.P is requested, module M containing procedure P must be
loaded, unless it is already loaded because a command from the same module had been executed
earlier or if the module had been imported by another module before. Modules are available in the
form of so-called object files, generated by the compiler. The term loading refers to the transfer of the
module code from the file into main memory, from where the processor fetches individual instructions.
This transfer involves also a certain amount of transformation as required by the object file format on
the one hand and the storage layout on the other. A system typically consists of many modules, and
hence loading modules also involves linking them together, in particular linking them with already
loaded modules. Before loading, references to another module's objects are relative to the base
address of this module; the linking or binding process converts them into absolute addresses.

The linking process may require a significant amount of address computations. But they are simple
enough and, if the data are organized in an appropriate way, can be executed very swiftly.
Nevertheless, and surprisingly, in many operating systems linking needs more time than compilation.
The remedy which system designers offer is a separation of linking from loading. A set of compiled
modules is first linked; the result is a linked object file with absolute addresses. The loader then
merely transfers the object file into main store.

We consider this an unfortunate solution. Instead of trying to cure an inadequacy with the aid of an
additional processing stage and an additional tool, it is wiser to cure the malady at its core, namely to
speed up the linking process itself. Indeed, there is no separate linker in the Oberon system. The
linker and loader are integrated and fast enough to avoid any desire for pre-linking. Furthermore, the
extensibility of a system crucially depends on the possibility to link additional modules to the ones
already loaded by calls from any module. This is called dynamic loading. This is not possible with pre-
linked object files. Newly loaded modules simply refer to the loaded ones, whereas pre-linked files
lead to the presence of multiple copies of the same module code.

Evidently, the essence of linking is the conversion of relative addresses as generated by the compiler
for all external references into absolute addresses as required during program execution. Before
proceeding, we must consider an additional complication. Assume that a module M1 is to be
compiled which is a client of (that is, it imports) module M0. The interface of M1 - in the form of a
symbol file - does not specify the entry addresses of its exported procedures, but merely specifies a
unique number (pno) for each one of them. The reason for this is that in this way the implementation
of M0 may be modified, causing a change of entry addresses, without affecting its interface
specification. And this is a crucial property of the scheme of separate compilation of modules:
changes of the implementation of M0 must not necessitate the recompilation of clients (M1). The
consequence is that the binding of entry addresses to procedure numbers must be performed by the
linker. In order to make this possible, the object file must contain a list (table) of its entry addresses,
one for each procedure number used as index to the table.

Similarly, the object file must contain a table of imported modules, containing their names. An
external reference in the program code then appears in the form of a pair consisting of a module
number (mno) - used as index to the import table (of modules) - and a procedure number (pno), used
as index to the entry table of this module.

Certain linkage information must not only be provided in each object file, but also be present along
with each loaded module's program code, because a module to be loaded must be linkable with
modules loaded at any earlier time without reading their object files again.

6.2. Module representation

 80

The primary requirement is that a system must be represented in a form that allows to add new
modules quickly. What is a sensible representation for this purpose? The simplest solution that
comes to mind is a list of module blocks containing sections for the global data, for the program code,
and perhaps meta data for the linking process. The list is rooted in a variable global to the loader
module, here called Modules.

Fig. 6.1. System of 4 modules

The first part, containing the link to the next module, is called the module descriptor. On the Oberon
System, it contains further links to the various sections of a module. The type Module is defined as
follows:

TYPE Module = POINTER TO ModDesc;
 ModuleName = ARRAY 32 OF CHAR;
 ModDesc = RECORD
 name: ModuleName;
 next: Module;
 key, num, size, refcnt: INTEGER;
 data, code, imp, cmd, ent, ptr: INTEGER (*addresses*)
 END ;

key is the module's key used for version consistency checking. The key changes if, and only if, the
module's interface and thereby its symbol file changes. num is the module's number, which is the
index of the module's entry in a global module table, referenced by the processor's MT register. The
invariant relationship is

ModTable[mod.mno] = mod.data

for all mod in the module list. size is the entire module block's size excluding the descriptor, and refcnt
is the number of other modules importing this module. This number is used to check whether a
module can be released by procedure Modules.Free.

data

code

meta

data

code

meta

data

code

meta

data

code

meta

NIL root

descriptor

data

program
code

imports

commands

entries

pointer
refs

meta data

 81

Figure 6.2. Module block headed by descriptor

The section with meta data follows the data and code areas and consists of several parts. Imports is
an array of the modules imported by this module, each entry being the address of the respective
module descriptor. Commands is a sequence of procedure identifiers followed by their offset in the
code section. This section is used when activating a command. Entries is an array of offsets of all
exported entities (including commands). This section is used by the loader itself for linking. Pointer
refs is an array of offsets of global pointer variables in the data section. These are used by the
garbage collector as the roots of graphs of heap objects in use.

6.3. The linking loader
The purpose of the loader is to read object files, and to transform the file representation of modules
into their internal image.

The loader is represented by procedure Load in module Modules. It accepts a name and returns a
pointer to the specified module's descriptor. It first scans the list searching for the named module.
Only if it is not present, the module is loaded and added to the list. Duplications therefore cannot
occur.

mod := root;
WHILE (mod # NIL) & (name # mod.name) DO mod := mod.next END ;
IF mod = NIL THEN (*load*) F := ThisFile(name); Files.Set(R, F, 0); ...

First, the header of the respective object file is read. It specifies the required size of the block which is
allocated in the module area at the position indicated by the global variable AllocPtr. Then the list of
imports of the module being imported is read, and these module are imported. Evidently procedure
Load is used recursively. Because cyclic imports are excluded, recursion always terminates.

Files.ReadString(R, impname); (*imports*)
WHILE (impname[0] # 0X) & (res = 0) DO
 Files.ReadInt(R, impkey);
 Load(impname, impmod); import[nofimps] := impmod; importing := name1;
 IF res = 0 THEN
 IF impmod.key = impkey THEN INC(impmod.refcnt); INC(nofimps)
 ELSE error(3, name); imported := impname
 END
 END ;
 Files.ReadString(R, impname)
END

The loading process stops, if a key mismatch is detected (err = 3). After successful loading of all
imports, the loading of the actual module proceeds by allocating a descriptor and then reading the
remaining sections of the file. The data is allocated (and cleared) and the code section is read in a
straight-forward way without alteration.

At the very end of the file three integers called fixorgP, fixorgD, and fixorgT are read. They are the
anchors of linked lists in the program code of instructions that need fixups. These fixups are
performed only after the entire file had been read. Traversing the P-list, the pairs mno-pno are
replaced by computed offsets in BL instructions (procedure calls). Traversing the D-list, addresses of
LDR instructions and instruction pairs are fixed up, and traversing the T-list, addresses of type
descriptors are computed and inserted. This low-level piece of code is shown below for call
instructions (BL). Those for the D-List and the T-list are analogous.

adr := mod.code + fixorgP*4;
WHILE adr # mod.code DO
 SYSTEM.GET(adr, inst);
 mno := inst DIV 100000H MOD 10H; (*decompose*)
 pno := inst DIV 1000H MOD 100H;
 disp := inst MOD 1000H;
 SYSTEM.GET(mod.imp + (mno-1)*4, impmod);
 SYSTEM.GET(impmod.ent + pno*4, dest); dest := dest + impmod.code;

 82

 offset := (dest - adr - 4) DIV 4;
 SYSTEM.PUT(adr, (offset MOD 1000000H) + 0F7000000H); (*compose*)
 adr := adr - disp*4
END ;

After the module has been loaded successfully, its initialisation body is executed.

Apart from Load, module Modules also contains the procedures
PROCEDURE ThisCommand (mod: Module; name: ARRAY OF CHAR): Command;
PROCEDURE Free (name: ARRAY OF CHAR);

The former yields the procedure named name from module mod. It is used in TextFrames.Call for
activating command procedures. The latter unloads the named module, i.e. removes it from the list of
loaded modules.

The frequent use of the low-level procedures SYSTEM.GET and SYSTEM.PUT is easily justified in
base modules such as the loader or device drivers. After all, here data are transferred into untyped
main storage.

6.4. The toolbox of the loader
User commands directed to the loader are contained in module System. The toolbox offers the
following three commands:

System.ShowModules
System.ShowCommands modname
System.Free {modname} ~

The first command opens a viewer and provides a list of all loaded modules. The list indicates the
block length and the number of clients importing a module (the reference count). ShowCommands
opens a viewer and lists the commands provided by the specified module. The commands are
prefixed by the module name, and hence can immediately be activated by a mouse click. Free is
called in order to remove modules either to regain storage space or to replace a module by a newly
compiled version. A module can be dispensed only if (1) it has no clients, and (2) if does not declare
any record types which are extensions of imported types.

6.5. The Oberon object file format
The name extension of object files is .rsc. Their syntax is the following:

CodeFile = name key version size
 imports typedesc varsize strings code commands entries ptrrefs fixP fixD fixT body "O".
imports = {modname key} 0X.
typedesc = nof {byte}.
strings = nof {char}.
code = nof {word}.
commands = {comname offset} 0X.
entries = nof {word}.
ptrrefs = {word} 0.

fixP, fixD, fixT are the origins of chains of instructions to be updated (fixed up). body is the entry point
offset of the module body.

 83

7 The file system

7.1. Files
It is essential that a computer system has a facility for storing data over longer periods of time
and for retrieving the stored data. Such a facility is called a file system. Evidently, a file system
cannot accommodate all possible data types and structures that will be programmed in the future.
Hence, it is necessary to provide a simple, yet flexible enough base structure that allows any data
structure to be mapped onto this base structure (and vice-versa) in a reasonably straight-forward
and efficient way. This base structure, called file, is a sequence of bytes. As a consequence, any
given structure to be transformed into a file must be sequentialized. The notion of sequence is
indeed fundamental, and it requires no further explanation and theory. We recall that texts are
sequences of characters, and that characters are typically represented as bytes.

The sequence is also the natural abstraction of all physically moving storage media. Among them
are magnetic tapes and disks. Magnetic media have the welcome property of non-volatility and
are therefore the primary choices for storing data over longer periods of time, especially over
periods where the equipment is switched off. Sequential access is also necessary for media that
allow access only by large blocks, such as flash-RAMs and SD-cards.

A further advantage of the sequence is that its transmission between media is simple too. The
reason is that its structural information is inherent and need not be encoded and transmitted in
addition to the actual data. This implicitness of structural information is particularly convenient in
the case of moving storage media, because they impose strict timing constraints on transmission
of consecutive elements. Therefore, the process which generates (or consumes) the data must
be effectively decoupled from the transmission process that observes the timing constraints. In
the case of sequences, this decoupling is simple to achieve by dividing a sequence into
subsequences which are buffered. A sequence is output to the storage medium by alternately
generating data (and filling the buffer holding the current subsequence) and transmitting data
(fetching elements from the buffer and transmitting them). The size of the subsequences (and the
buffer) depends on the storage medium under consideration: there must be no timing constraints
between accesses to consecutive subsequences.

The file is not a static data structure like the array or the record, because the length may increase
dynamically, i.e. during program execution. On the other hand, the sequence is less flexible than
general dynamic structures, because it cannot change its form, but only its length, since elements
can only be appended but not inserted. It might therefore be called a semi-dynamic structure.

The discipline of purely sequential access to a file is enforced by restricting access to calls of
specific procedures, typically read and write procedures for scanning and generating a file. In the
jargon of data processing, a file must be opened before reading or writing is possible. The
opening implies the initialization of a reading and writing mechanism, and in particular the fixing of
its initial position. Hence each (opened) file not only has a value and a length, but also a position
attributed to it. If reading must occur from several positions (still sequentially) alternately, the file
is "multiply opened"; it implies that the same file is represented by several variables, each
denoting a different position.

This widespread view of files is conceptually unappealing, and the Oberon file system therefore
departs from it by introducing the notion of a rider. A file simply has a value, the sequence of
bytes, and a length, the number of bytes in the sequence. Reading and writing occurs through a
rider, which denotes a position. "Multiple opening" is achieved by simply using several riders
riding on the same file. Thereby the two concepts of data structure (file) and access mechanism
(rider) are clearly distinct and properly disentangled.

Given a file f, a rider r is placed on a file by the call Files.Set (r, f, pos), where pos indicates the
position from which reading or writing is to start. Calls of Files.Read (r, x) and Files.Write (r, x)

 84

implicitly increment the position beyond the element read or written, and the file is implicitly
denoted via the explicit parameter r, which denotes a rider. The rider has two (visible) attributes,
namely r.eof and r.res. The former is set to FALSE by Files.Set, and to TRUE when a read
operation could not be performed, because the end of the file had been reached. r.res serves as
a result variable in procedures ReadBytes and WriteBytes allowing one to check for correct
termination.

A file system must not only provide the concept of a sequence with its accessing mechanism, but
also a registry. This implies that files be identified, that they can be given a name by which they
are registered and retrieved. The registry or collection of registered names is called the file
system's directory. Here we wish to emphasize that the concepts of files as data structure with
associated access facilities on the one hand, and the concept of file naming and directory
management on the other hand must also be considered separately and as independent notions.
In fact, in the Oberon system their implementation underscores this separation by the existence
of two modules: Files and FileDir. The following procedures are available. They are summarized
by the interface specification (definition) of module Files.

DEFINITION Files;
 TYPE File = POINTER TO FileDesc;
 FileDesc = RECORD END ;
 Rider = RECORD eof: BOOLEAN; res: INTEGER END ;

 PROCEDURE Old(name: ARRAY OF CHAR): File;
 PROCEDURE New(name: ARRAY OF CHAR): File;
 PROCEDURE Register(f: File);
 PROCEDURE Close(f: File);
 PROCEDURE Purge(f: File);
 PROCEDURE Length(f: File): INTEGER;
 PROCEDURE Date(f: File): INTEGER);

 PROCEDURE Set(VAR r: Rider; f: File; pos: INTEGER);
 PROCEDURE ReadByte(VAR r: Rider; VAR x: BYTE);
 PROCEDURE ReadBytes(VAR r: Rider; VAR x: ARRAY OF BYTE; n: INTEGER);
 PROCEDURE Read(VAR r: Rider; VAR ch: CHAR);
 PROCEDURE ReadInt(VAR r: Rider; VAR n: INTEGER);
 PROCEDURE ReadSet(VAR r: Rider; VAR s: SET);
 PROCEDURE ReadReal(VAR r: Rider; VAR x: REAL);
 PROCEDURE ReadString(VAR r: Rider; VAR s: ARRAY OF CHAR);
 PROCEDURE ReadNum(VAR r: Rider; VAR n: INTEGER);

 PROCEDURE WriteByte(VAR r: Rider; x: BYTE);
 PROCEDURE WriteBytes(VAR r: Rider; x: ARRAY OF BYTE; n: INTEGER);
 PROCEDURE WriteInt(VAR r: Rider; n: INTEGER);
 PROCEDURE WriteSet(VAR r: Rider; s: SET);
 PROCEDURE WriteReal(VAR r: Rider; x: REAL);
 PROCEDURE WriteString(VAR r: Rider; x: ARRAY OF CHAR);
 PROCEDURE WriteNum(VAR r: Rider; n: INTEGER);
 PROCEDURE Pos(VAR r: Rider): INTEGER;
 PROCEDURE Base(VAR r: Rider): File;

 PROCEDURE Rename(old, new: ARRAY OF CHAR; VAR res: INTEGER);
 PROCEDURE Delete(name: ARRAY OF CHAR; VAR res: INTEGER);
END Files.

New(name) yields a new (empty) file without registering it in the directory. Old(name) retrieves
the file with the specified name, or yields NIL, if it is not found in the directory. Register(f) inserts
the name of f (specified in the call of New) in the directory. An already existing entry with this
name is replaced. Close(f) must be called after writing is completed and the file is not to be

 85

registered. Close actually stands for "close buffers", and is implied in the procedure Register.
Procedure Purge will be explained at the end of section 7.2.

The sequential scan of a file f (reading characters) is programmed as shown in the following
template:

VAR f: Files.File; r: Files.Rider;

f := Files.Old(name);
IF f # NIL THEN
 Files.Set (r, f, 0); Files.Read (r, x);
 WHILE ~ r.eof DO ... x ...; Files.Read(r, x) END
END

The analogous template for a purely sequential writing is:

f := Files.New(name); Files.Set(r, f, 0);
WHILE ... DO Files.Write (r, x); ... END
Files.Register(f)

There exist two further procedures; they do not change any files, but only affect the directory.
Delete(name, res) causes the removal of the named entry from the directory. Rename(old, new,
res) causes the replacement of the directory entry old by new.

It may surprise the reader that these two procedures, which affect the directory only, are exported
from module Files instead of FileDir. The reason is that the presence of the two modules,
together forming the file system, is also used for separating the interface into a public and a
private (or semi-public) part. The definition (in the form of a symbol file) of FileDir is not intended
to be freely available, but restricted to use by system programmers. This allows the export of
certain sensitive data, (such as file headers) and sensitive procedures (such as Enumerate)
without the danger of misuse by inadvertent users.

Module Files constitutes a most important interface whose stability is utterly essential, because it
is used by almost every module programmed. During the entire time span of development of the
Oberon system, this interface had changed only once. We also note that this interface is very
terse, a factor contributing to its stability. Yet, the offered facilities have in practice over years
proved to be both necessary and sufficient.

7.2 Implementation of files on a random-access store
A file cannot be allocated as a block of contiguous storage locations, because its length is not
fixed. Neither can it be represented as a linked list of individual elements, because this would
lead to inefficient use of storage - more might be used for the links than the elements themselves.
The solution generally adopted is a compromise between the two extremes: files are represented
as lists of blocks (subsequently called sectors) of fixed length. A block is appended when the last
one is filled. On the average, each file therefore wastes half of a sector. Typical sector sizes are
0.5, 1, 2, or 4 Kbytes, depending on the device used as store.

It immediately follows that access to an element is not as simple as in the case of an array. The
primary concern in the design of a file system and access scheme must be the efficiency of
access to individual elements while scanning the sequence, at least in the case when the next
element lies within the same sector. This access must be no more complicated than a
comparison of two variables followed by an indexed access to the file element and the
incrementing of an address pointing to the element's successor. If the successor lies in another
sector, the procedure may be more involved, as transitions to the next sector occur much less
frequently.

The second most crucial design decision concerns the data structure in which sectors are
organized; it determines how a succeeding sector is located. The simplest solution is to link
sectors in a list. This is acceptable if access is to be restricted to purely sequential scans.
Although this would be sufficient for most applications, it is unnecessarily restrictive for media

 86

other than purely sequential ones (tapes). After all, it is sometimes practical to position a rider at
an arbitrary point in the file rather than always at its beginning. This is made possible by the use
of an indexed sector table, typically stored as a header in the file. The table is an array of the
addresses of the file's data sectors. Unfortunately, the length of the table needed is unknown.
Choosing a fixed length for all files is controversial, because it inevitably leads to either a
limitation of file length (when chosen too small) that is unacceptable in some applications, or to a
large waste of file space (when chosen too large). Experience shows that in practice most files
are quite short, i.e. in the order of a few thousand bytes. The dilemma is avoided by a two-level
table, i.e. by using a table of tables.

The scheme chosen in Oberon is slightly more complex in order to favor short files (< 64 K
bytes): Each file header contains a table of 64 entries, each pointing to a 1K byte sector.
Additionally, it contains a table of 12 entries, the so-called extensions, each pointing to an index
sector containing 256 further sector pointers. The file length is thereby limited to 64 + 12*256
sectors, or 3'211'264 bytes (minus the length of the header). The chosen structure is illustrated in
Fig. 7.1. sec[0] always points to the sector containing the file header.

Figure 7.1 File header and extension sectors

The header contains some additional data, namely the length of the file (in bytes), its name, and
date and time of its creation. The size of the header is 352 bytes; the remaining 672 bytes of the
first sector are used for data. Hence, truly short files occupy a single sector only. The declaration
of the file header is contained in the definition of module FileDir. An abbreviated version
containing the fields relevant so far is:

FileHeader = RECORD
 leng: INTEGER;
 ext: ARRAY 12 OF SectorPointer;
 sec: ARRAY 64 OF SectorPointer
END

We now turn our attention to the implementation of file access, and first present a system that
uses main storage for the file data instead of a disk and therefore avoids the problems introduced
by sector buffering. The key data structure in this connection is the Rider, represented as a
record.

Rider = RECORD
 eof: BOOLEAN; res, pos, adr: INTEGER;
 file: File
END

A rider is initialised by a call Set(r, f, pos), which places the rider r on file f at position pos. From
this it is clear that the rider record must contain fields denoting the attached file and the rider's
position on it. We note that they are not exported. However, their values can be obtained by the

primary
sector
table
sec 0 - 63

ext sec
table

data index sec 0
sec 64 - 319

index sec 1
sec 320 -575

sec 0

 87

function procedures Pos(r) and Base(r). This allows a (hidden) representation most appropriate
for an efficient implementation of Read and Write without being unsafe.

Consider now the call Read(r, x); its task is to assign the value of the byte designated by the
rider's position to x and to advance the position to the next byte. Considering the structure by
which file data are represented, we easily obtain the following program, assuming that the
position is legal, i.e. non-negative and less than the file's length. a, b, c are local variables, HS is
the size of the header (in sector 0), SS is the sector size, typically a power of 2 in order to make
division efficient.

a := (r.pos + HS) DIV SS; b := (r.pos + HS) MOD SS;
IF a < 64 THEN c := r.file.sec[a]
ELSE c := r.file.ext[(a - 64) DIV 256].sec[(a - 64) MOD 256]
END ;
SYSTEM.GET(c + b, x) ; INC (r.pos)

In order to gain efficiency, we use the low-level procedure GET that assigns the value at address
c+b to x. This program is reasonably short, but involves considerable address computations at
every access, and in particular at positions larger than 64 * SS. Fortunately, there exists an easy
remedy, namely that of caching the address of the current position. This explains the presence of
the field adr in the rider record. The resulting program is shown below; note that in order to avoid
the addition of HS, pos is defined to denote the genuine position, i.e. the abstract position
augmented by HS.

SYSTEM.GET(r.adr, x); INC(r.adr); INC(r.pos);
IF r.pos MOD SS = 0 THEN
 m := r.pos DIV SS;
 IF m < 64 THEN r.adr := r.file.sec[m]
 ELSE r.adr := r.file.ext[(m - 64) DIV 256].sec[(m - 64) MOD 256]
 END
END

We emphasize that in all but one out of 1024 cases only three instructions and a single test are to
be executed. This improvement therefore is crucial to the efficiency of file access, and to that of
the entire Oberon System. We now present the entire file module (for files on a random-access
store).

MODULE MFiles; (*NW 24.8.90 / 12.10.90 / 20.6.2013*)
 IMPORT SYSTEM, Kernel, FileDir;
 (*A file consists of a sequence of sectors. The first sector contains the header.
 Part of the header is the sector table, an array of addresses to the sectors.
 A file is referenced through riders each of which indicates a position.*)

 CONST
 HS = FileDir.HeaderSize;
 SS = FileDir.SectorSize;
 STS = FileDir.SecTabSize;
 XS = FileDir.IndexSize;

 TYPE File* = POINTER TO FileDesc;
 Index = POINTER TO IndexRecord;
 IndexRecord = RECORD sec: FileDir.IndexSector END ;

 Rider* =
 RECORD eof*: BOOLEAN;
 res*, pos, adr: INTEGER;
 file: File
 END ;

 FileDesc =
 RECORD mark: INTEGER;
 name: FileDir.FileName;
 len, date: INTEGER;
 ext: ARRAY FileDir.ExTabSize OF Index;

 88

 sec: FileDir.SectorTable
 END ;

 PROCEDURE Old*(name: ARRAY OF CHAR): File;
 VAR head: INTEGER;
 namebuf: FileDir.FileName;
 BEGIN
 FileDir.Search(name, head); RETURN SYSTEM.VAL(File, head)
 END Old;

 PROCEDURE New*(name: ARRAY OF CHAR): File;
 VAR f: File; head: INTEGER;
 BEGIN f := NIL; Kernel.AllocSector(0, head);
 IF head # 0 THEN
 f := SYSTEM.VAL(File, head); f.mark := FileDir.HeaderMark;
 f.len := HS; f.name := name;
 f.date := Kernel.Clock(); f.sec[0] := head
 END ;
 RETURN f
 END New;

 PROCEDURE Register*(f: File);
 BEGIN
 IF (f # NIL) & (f.name[0] > 0X) THEN FileDir.Insert(f.name, f.sec[0]) END ;
 END Register;

 PROCEDURE Length*(f: File): INTEGER;
 BEGIN RETURN f.len - HS
 END Length;

 PROCEDURE Date*(f: File): INTEGER;
 BEGIN RETURN f.date
 END Date;

 PROCEDURE Set*(VAR r: Rider; f: File; pos: LONGINT);
 VAR m, n: INTEGER;
 BEGIN r.eof := FALSE; r.res := 0;
 IF f # NIL THEN
 IF pos < 0 THEN r.pos := HS
 ELSIF pos > f.len - HS THEN r.pos := f.len
 ELSE r.pos := pos + HS
 END ;
 r.file := f; m := r.pos DIV SS; n := r.pos MOD SS;
 IF m < STS THEN r.adr := f.sec[m] + n
 ELSE r.adr := f.ext[(m-STS) DIV XS].sec[(m-STS) MOD XS] + n
 END
 END
 END Set;

 PROCEDURE ReadByte*(VAR r: Rider; VAR x: BYTE);
 VAR m: INTEGER;
 BEGIN
 IF r.pos < r.file.len THEN
 SYSTEM.GET(r.adr, x); INC(r.adr); INC(r.pos);
 IF r.adr MOD SS = 0 THEN
 m := r.pos DIV SS;
 IF m < STS THEN r.adr := r.file.sec[m]
 ELSE r.adr := r.file.ext[(m-STS) DIV XS].sec[(m-STS) MOD XS]
 END
 END
 ELSE x := 0; r.eof := TRUE
 END
 END ReadByte;

 89

 PROCEDURE WriteByte*(VAR r: Rider; x: BYTE);
 VAR k, m, n, ix: INTEGER;
 BEGIN
 IF r.pos < r.file.len THEN
 m := r.pos DIV SS; INC(r.pos);
 IF m < STS THEN r.adr := r.file.sec[m]
 ELSE r.adr := r.file.ext[(m-STS) DIV XS].sec[(m-STS) MOD XS]
 END
 ELSE
 IF r.adr MOD SS = 0 THEN
 m := r.pos DIV SS;
 IF m < STS THEN Kernel.AllocSector(0, r.adr); r.file.sec[m] := r.adr
 ELSE n := (m - STS) DIV XS; k := (m - STS) MOD XS;
 IF k = 0 THEN (*new index*)
 Kernel.AllocSector(0, ix); r.file.ext[n] := SYSTEM.VAL(Index, ix)
 END ;
 Kernel.AllocSector(0, r.adr); r.file.ext[n].sec[k] := r.adr
 END
 END ;
 INC(r.pos); r.file.len := r.pos
 END ;
 SYSTEM.PUT(r.adr, x); INC(r.adr)
 END WriteByte;

 PROCEDURE Pos*(VAR r: Rider): INTEGER;
 BEGIN RETURN r.pos - HS
 END Pos;

 PROCEDURE Base*(VAR r: Rider): File;
 BEGIN RETURN r.file
 END Base;
END MFiles.

Allocation of a new sector occurs upon creating a file (Files.New), and when writing at the end of
a file after the current sector had been filled. Procedure AllocSector yields the address of the
allocated sector. It is determined by a search in the sector reservation table for a free sector. In
this table, every sector is represented by a single bit indicating whether or not the sector is
allocated. Although conceptually belonging to the file system, this table resides within module
Kernel.

Deallocation of a file's sectors could occur as soon as the file is no longer accessible, neither
through a variable of any loaded module nor from the file directory. However, this moment is
difficult to determine. Therefore, the method of garbage collection is used in Oberon for the
deallocation of file space. In consideration of the fact that file space is large and the collection of
unused sectors relatively time-consuming, we confine this process to system initialization. It is
represented by procedure FileDir.Init. At that time, the only referenced files are those registered
in the directory. Init therefore scans the entire directory and records the sectors referenced in
each file in the sector reservation table (see Sect. 7.4).

For applications where system startup and initialization is supposed to occur very infrequently,
such as for server systems, a procedure Files.Purge is provided. Its effect is to return the sectors
used by the specified file to the pool of free sectors. Evidently, the programmer then bears the
responsibility to guarantee that no references to the purged file continue to exist. This may be
possible in a closed server system, but files should not be purged under normal circumstances,
as a violation of said precondition will lead to unpredictable disaster.

The following procedures used for allocating, deallocating, and marking sectors in the sector
reservation table are defined in module Kernel:

PROCEDURE AllocSector(hint: INTEGER; VAR sec: INTEGER); (*used in WriteByte*)
PROCEDURE MarkSector(sec: INTEGER); (*used in Init*)
PROCEDURE FreeSector(sec: INTEGER); (*used in Purge*)

 90

7.3 Implementation of files on a disk
First we recall that the organization of files as sets of individually allocated blocks (sectors) is
inherently required by the allocation considerations of dynamically growing sequences. However,
if the storage medium is a tape, a disk, or a flash-RAM, there exists an additional reason for the
use of blocks. They constitute the subsequences to be individually buffered for transmission in
order to overcome the timing constraints imposed by the medium. If an adequate space utilization
is to be achieved, the blocks must not be too long. A typical size is 1, 2, or 4K bytes.

This necessity of buffering has a profound influence on the implementation of file access. The
complication arises because the abstraction of the sequence of individual bytes needs to be
maintained. The increase in complexity of file access is considerable, as can be seen by
comparing the program listings of the two respective implementations.

The first, obvious measure is to copy the file's sector table into primary store when a file is
"opened" through a call of New() or Old(). The record holding this copy is the file descriptor, and
the value f denoting the file points to this handle (instead of the actual header on disk). The
descriptor also contains the remaining information stored in the header, in particular the file's
length.

If a file is read (or written) in purely sequential manner, a single buffer is appropriate for the
transfer of data. For reading, the buffer is filled by reading a sector from the disk, and bytes are
picked up individually from the buffer. For writing, bytes are deposited individually, and the buffer
is written onto disk as a whole when full. The buffer is associated with the file, and a pointer to it
is contained in the descriptor.

However, we recall that several riders may be placed on a file and be moved independently. It
might be appealing to associate a buffer with each rider. But this proposal must quickly be
rejected when we realize that several riders may be active at neighbouring positions. If these
positions refer to the same sector, which is duplicated in the riders' distinct buffers, the buffers
may easily become inconsistent. Obviously, buffers must not be associated with riders, but with
the file itself. The descriptor therefore contains the head of a list of linked buffers. Each buffer is
identified by its position in the file. An invariant of the system is that no two buffers represent the
same sector.

Even with the presence of a single rider, the possibility of having several buffers associated with a
file can be advantageous, if a rider is frequently repositioned. It becomes a question of strategy
and heuristics when to allocate a new buffer. In the Oberon system, we have adopted the
following solution:

1. The first buffer is created when the file is opened (New, Old).
2. Additional buffers may be allocated when a rider is placed (or repositioned) on the file.
3. At most four buffers are connected to the same file.
4. Purely sequential movements of riders do not cause allocation of buffers.
5. Separate buffers are generated when extensions of the file's sector table need be accessed

(rider position > 64K). Each buffers the 256 sector addresses of the respective index sector.

The outlined scheme requires and is based upon the following data structures and types:
File = POINTER TO FileDesc;
Buffer = POINTER TO BufferRecord;
Index = POINTER TO IndexRecord;

FileDesc = RECORD next: File;
 aleng, bleng: INTEGER; (*file length*)
 nofbufs: INTEGER; (*no. of buffers allocated*)
 modH, registered: BOOLEAN; (*header has been modified*)
 firstbuf: Buffer: (*head of buffer chain*)
 sechint: DiskAdr; (*sector hint*)
 name: FileDir.FileName;
 date: INTEGER;

 91

 ext: ARRAY FileDir.ExTabSize OF Index;
 sec: ARRAY 64 OF DiskAdr
 END;

BufferRecord = RECORD apos, lim: INTEGER; (*lim = no. of bytes*)
 mod: BOOLEAN; (*buffer has been modified*)
 next: Buffer; (*buffer chain*)
 data: FileDir.DataSector
 END;

IndexRecord = RECORD adr: DiskAdr;
 mod: BOOLEAN; (*index record has been modified*)
 sec: FileDir.IndexSector
 END;

Rider = RECORD eof: BOOLEAN; (*end of file reached*)
 res: INTEGER; (*no. of unread bytes*)
 file: File;
 apos, bpos: INTEGER; (*position*)
 buf: Buffer (*hint: likely buffer*)
 END ;

In order to increase efficiency of access, riders have been provided with a field containing the
address of the element of the rider's position. From the conditions stated above for the allocation
of buffers, it is evident that the value of this field can be a hint only. This implies that there can be
no reliance on its information. Whenever it is used, its validity has to be checked. The check
consists in a comparison of the riders' position r.apos with the hinted buffer's actual position
r.buf.apos. If they differ, a buffer with the desired position must be searched and, if not present,
allocated. The advantage of the hint lies in the fact that the hint is correct with a very high
probability. The check is included in procedures Read, ReadByte, Write, and WriteByte.

Some fields of the record types require additional explanations:

1. The length is stored in a "preprocessed" form, namely by the two integers aleng and bleng
such that aleng is a sector number and

length = (aleng * SS) + bleng - HS
aleng = (length + HS) DIV SS
bleng = (length + HS) MOD SS

The same holds for the form of the position in riders (apos, bpos).

2. The field nofbufs indicates the number of buffers in the list headed by firstbuf:

1 <= nofbufs <= Maxbufs.

3. Whenever data are written into a buffer, the file becomes inconsistent, i.e. the data on the disk
are outdated. The file is updated, i.e. the buffer is copied into the corresponding disk sector,
whenever the buffer is reallocated, e.g. during sequential writing after the buffer is full and is
"advanced". During sequential reading, a buffer is also advanced and reused, but needs not be
copied onto disk, because it is still consistent. Whether a buffer is consistent or not is indicated by
its state variable mod (modified). Similarly, the field modH in the file descriptor indicates whether
or not the header had been modified.

4. The field sechint records the number of the last sector allocated to the file and serves as a hint
to the kernel's allocation procedure, which allocates a next sector with an address larger than the
hint. This is a measure to gain speed in sequential scans.

5. The buffer's position is specified by its field apos. Used as index in the file header's sector
table, it yields the sector corresponding to the current buffer contents. The field lim specifies the
number of bytes s stored in the buffer. Reading cannot proceed beyond this limiting index; writing
beyond it implies an increase in the file's length. All buffers except the one for the last sector are
filled and specify lim = SS.

 92

6. The hidden rider field buf is merely a hint to speed up localization of the concerned buffer. A
hint is likely, but not guaranteed to be correct. Its validity must be checked before use. The buffer
hint is invalidated when a buffer is reallocated and/or a rider is repositioned.

The structure of riders remains practically the same as for files using main store. The hidden field
adr is merely replaced by a pointer to the buffer covering the rider's position. A configuration of a
file f with two riders is shown in Fig 7.2.

Figure 7.2 File f with two riders and two buffers

Some comments concerning module Files follow.

1. After the writing of a file has been completed, its name is usually registered in the directory.
Register invokes procedure Unbuffer. It inspects the associated buffers and copies those onto
disk which had been modified. During this process, new index sectors may have to be transferred
as well. If a file is to remain anonymous and local to a module or command, i.e. is not to be
registered, but merely to be read, the release of buffers must be specified by an explicit call to
Close (meaning "close buffers"), which also invokes Unbuffer.

2. Procedure Old (and for reasons of consistency also New) deviates from the general Oberon
programming rule that an object be allocated by the calling (instead of the called) module. This
rule would suggest the statements

New(f); Files.Open(f, name)

instead of f := Files.Old(name). The justification for the rule is that any extension of the type of f
could be allocated, providing for more flexibility. And the reason for our deviation in the case of
files is that, upon closer inspection, not a new file, but only a new descriptor is to be allocated.
The distinction becomes evident when we consider that several statements f := Files.Old(name)
with different f and identical name may occur, probably in different modules. In this case, it is
necessary that the same descriptor is referenced by the delivered pointers in order to avoid file
inconsistency. Each (opened) file must have exactly one descriptor. When a file is opened, the
first action is therefore to inspect whether a descriptor of this file already exists. For this purpose,
all descriptors are linked together in a list anchored by the global variable root and linked by the
descriptor field next. This measure may seem to solve the problem of avoiding inconsistencies

length

nofbufs

firstbuf

date

file

pos

buf

file

pos

buf primary
sector
table

next

apos

lim

data

next

apos

lim

data

FileDesc

Rider Rider

Buffer Buffer

 93

smoothly. However, there exists a pitfall that is easily overlooked: All opened files would
permanently remain accessible via root, and the garbage collector could never remove a file
descriptor nor its associated buffers. This would be unacceptable. In order to hide this list from
the garbage collector, it is represented by integers (addresses) instead of pointers.

3. Sector pointers are represented by sector numbers of type INTEGER. Actually, we use the
numbers multiplied by 29. This implies that any single-bit error leads to a number which is not a
multiple of 29, and hence can easily be detected. Thereby the crucial sector addresses are
software parity checked and are safe (against single-bit errors) even on computers without
hardware parity check. The check is performed by procedures Kernel.GetSector and
Kernel.PutSector.

7.4 The file directory
A directory is a set of pairs, each pair consisting of a name (key) and an object (here: file). It
serves to retrieve objects by their name. If efficiency matters, the directory is organized as an
ordered set, ordered according to the keys. The most frequently used structures for ordered sets
are trees and hash tables. The latter have disadvantages when the size of the set is unknown,
particularly when its order of magnitude is unknown, and when deletions occur. The Oberon
system therefore uses a tree structure for its file directory, more specifically a B-tree, which was
developed especially for cases where not individual pairs, but only sets of pairs as a whole
(placed on a disk sector) can be accessed.

For a thorough study of B-trees we refer the reader to the literature [1, 2]. Here it must suffice to
specify the B-tree's principal characteristics:
1. In a B-tree of order N, each node (called page) contains m elements (pairs), where N <= m <=

2N, except the root, where 0 <= m <= 2N.
2. A page with m elements has either 0 descendants, in which case it is called a leaf page, or m +

1 descendants.
3. All leaf pages are on the same (bottom) level.

From 3. it follows that the B-tree is a balanced tree. Its height, and with it the longest path's
length, has an upper bound of, roughly, 2 * log k, where k is the number of elements and the
logarithm is taken to the base N and rounded up to the next larger integer. Its minimal height is
log k taken to the base 2N.

On each page, space must be available for 2N elements and for 2N + 1 references to
descendants. Hence, N is immediately determined by the size of a page and the size of elements.
In the case of the Oberon system, names are limited to 32 characters (bytes), and the object is a
reference to the associated file (4 bytes). Each descendant pointer takes 4 bytes, and the page
size is given by the sector size (1024) minus the number of bytes needed to store m (2 bytes).
Hence

N = ((1024 - 2 - 4) DIV (32 + 4 + 4)) DIV 2 = 12

A B-tree of height h and order 12 may contain the following minimal and maximal number of
elements:

height minimum maximum
1 0 24
2 25 624
3 625 15624
4 15625 390624

It follows that the height of the B-tree will never be larger than 4, if the disk has a capacity of less
than about 400 Mbyte, and assuming that each file occupies a single 1K sector. It is rarely larger
than 3 in practice.

 94

The definition of module FileDir shows the available directory operations. Apart from the
procedures Search, Insert, Delete, and Enumerate, it contains some data definitions, and it
should be considered as the non-public part of the file system's interface.

DEFINITION FileDir;
 IMPORT SYSTEM, Kernel;
 CONST
 FnLength = 32; (*max length of file name*)
 SecTabSize = 64; (*no. of entries in primary table*)
 ExTabSize = 12;
 SectorSize = 1024;
 IndexSize = SectorSize DIV 4; (*no. of entries in index sector*)
 HeaderSize = 352;
 DirRootAdr = 29;
 DirPgSize = 24; (*max no. of elements on page*)

 TYPE DiskAdr = INTEGER;
 FileName = ARRAY FnLength OF CHAR;
 SectorTable = ARRAY SecTabSize OF DiskAsr;
 ExtensionTable = ARRAY ExTabSize OF DiskAdr;
 EntryHandler = PROCEDURE (name: FileName; sec: DiskAdr; VAR continue: BOOLEAN);

 FileHeader = RECORD (*first page of each file on disk*)
 mark: INTEGER;
 name: FileName;
 aleng, bleng, date: INTEGER;
 ext: ExtensionTable;
 sec: SectorTable
 END ;

 IndexSector = RECORD (Kernel.Sector)
 x: ARRAY IndexSize OF LONGINT;
 END ;

 DataSector = ARRAY SectorSize OF BYTE;

 DirEntry = RECORD
 name: FileName;
 adr, p: DiskAdr
 END ;

 DirPage = RECORD
 mark: INTEGER;
 m: INTEGER; (*no. of elements on page*)
 p0: DiskAdr;
 e: ARRAY DirPgSize OF DirEntry;
 END ;

 PROCEDURE Search(name: FileName; VAR fad: DiskAdr);
 PROCEDURE Insert(name: FileName; fad: DiskAdr);
 PROCEDURE Delete(name: FileName; VAR fad: DiskAdr);
 PROCEDURE Enumerate(prefix: ARRAY OF CHAR; proc: EntryHandler);

END FileDir.

Procedures Search, Insert, and Delete represent the typical operations performed on a directory.
Efficiency of the first operation is of primary importance. But the B-tree structure also guarantees
efficient insertion and deletion, although the code for these operations is complex. Procedure
Enumerate is used to obtain excerpts of the directory. The programmer must guarantee that no
directory changes are performed by the parametric procedure of Enumerate.

As in the presentation of module Files, we first discuss a version that uses main storage rather
than a disk for the directory. This allows us to concentrate on the algorithms for handling the
directory, leaving out the additional complications due to the necessity to read pages (sectors)
into main store for selective updating and of restoring them onto disk. In particular, we point out

 95

the definitions of the data types for B-tree nodes, called DirPage, and elements, called DirEntry.
The component E.p of an entry E points to the page in which all elements (with index k) have
keys E.p.e[k].name > E.name. The pointer p.p0 points to a page in which all elements have keys
p.p0.e[k].name < p.e[0].name. We can visualize these conditions by Fig. 7.3, where names have
been replaced by integers as keys.

Figure 7.3 Example of a B-tree of order 2

Procedure Search starts by inspecting the root page. It performs a binary search among its
elements, according to the following algorithm. Let e[0 ... m-1] be the ordered keys and x the
search argument.

L := 0; R := m;
WHILE L < R DO
 i := (L+R) DIV 2;
 IF x <= e[i] THEN R := i ELSE L := i + 1 END
END;
IF (R < m) & (x = e[R]) THEN found END

The invariant is

e[L-1] < x <= e[R]

If the desired element is not found, the search continues on the appropriate descendant page, if
there is one. Otherwise the element is not contained in the tree.

Procedures insert and delete use the same algorithm for searching an element within a page.
However, they use recursion instead of iteration to proceed along the search path of pages. We
recall that the depth of recursion is at most four. The reason for the use of recursion is that it
facilitates the formulation of structural changes, which are performed during the "unwinding" of
recursion, i.e. on the return path. First, the insertion point (respectively the position of the element
to be deleted) is searched, and then the element is inserted (deleted).

Upon insertion, the number of elements on the insertion page may become larger than 2N,
violating B-tree condition 1. This situation is called page overflow. The invariant must be
reestablished immediately. It could be achieved by moving one element from either end of the
array e onto a neighbouring page. However, we choose not to do this, and instead to split the
overflowing page into two pages immediately. The process of a page split is visualized by Fig 7.4,
in which we distinguish between three cases, namely R < N, R = N, and R > N, where R marks
the insertion point. a denotes the overflowing, b the new page, and u the inserted element.

The 2N + 1 elements (2N from the full page a, plus the one element u to be inserted) are equally
distributed onto pages a and b. One element v is pushed up in the tree. It must be inserted in the
ancestor page of a. Since that page obtains an additional descendant, it must also obtain an
additional element in order to maintain B-tree rule 2.

A page split may thus propagate, because the insertion of element v in the ancestor page may
require a split once again. If the root page is full, it is split too, and the emerging element v is
inserted in a new root page containing a single element. This is the only way in which the height
of a B-tree can increase.

3

14

7 10

4 5 6 1 2 8 9 11 12 13

p.e[2].p p.p0 p.e[0].p p.e[1].p

p

 96

Figure 7.4 Page split when inserting element u

When an element is to be deleted, it cannot simply be removed, if it resides on an internal page.
In this case, it is first replaced by another element, namely one of the two neighbouring elements
on a leaf page, i.e. the next smaller (or next larger) element, which is always on a leaf page. In
the presented solution, the replacing element is the largest on the left subtree (see procedure
del). Hence, the actual deletion always occurs on a leaf page.

Upon deletion, the number of elements in a page may become less than N, violating invariant 1.
This event is called page underflow. Since restructuring the tree is a relatively complicated
operation, we first try to reestablish the invariant by borrowing an element from a neighbouring
page. In fact, it is reasonable to borrow several elements, and thereby to decrease the likelihood
of an underflow on the same page upon further deletions. The number of elements that could be
taken from the neighbouring page b is b.m - N. Hence we will borrow

k = (b.m - N + 1) DIV 2

elements. The process of page balancing then distributes the elements of the underflowing and
its neighbouring page equally to both pages (see procedure underflow).

However, if (and only if) the neighbouring page has no elements to spare, the two pages can and
must be united. This action, called page merge, places the N-1 elements from the underflowing
page, the N elements from the neighbouring page, plus one element from the ancestor page onto
a single page of size 2N. One element must be taken from the ancestor page, because that page
loses one descendant and invariant rule 2 must be maintained. The events of page balancing and
merging are illustrated in Fig 7.5. a is the underflowing page, b its neighbouring page, and c their
ancestor; s is the position in the ancestor page of (the pointer to the) underflowing page a. Two
cases are distinguished, namely whether the underflowing page is the rightmost element (s =
c.m) or not (see procedure underflow).

A

Case 1: R < N

B v C
R N

A Bv C

R N

v

N
N

Case 2: R = N

A C
N

A C

u

u = v

A

Case3: R > N

B v C
R N

A B u C

v

R-N-1

 97

Figure 7.5 Page balancing and merging when deleting element

Similarly to the splitting process, merging may propagate, because the removal of an element
from the ancestor page may again cause an underflow, and perhaps a merge. The root page
underflows only if its last element is removed. This is the only way in which the B-tree's height
can decrease.

MODULE BTree;
 IMPORT Texts, Oberon;

 CONST N = 3;

 TYPE Page = POINTER TO PageRec;

 Entry = RECORD
 key, data: INTEGER;
 p: Page
 END ;

 PageRec = RECORD
 m: INTEGER; (*no. of entries on page*)
 p0: Page;
 e: ARRAY 2*N OF Entry
 END ;

 VAR root: Page; W: Texts.Writer;

PROCEDURE search(x: INTEGER; VAR p: Page; VAR k: INTEGER);
 VAR i, L, R: INTEGER; found: BOOLEAN; a: Page;

case 1: s < c.m

s

N

k

s

A B v C

N-1

N-1

u
k > 0: balance

c.m

A C

v

s

u B

s

k = 0: merge

A u C

k

s

B v C

u

case 2: s = c.m

A

k > 0: balance

A C

v

s

uB

(a discarded)

N
A u C

k = 0: merge

(b discarded)

b

a

 98

BEGIN a := root; found := FALSE;
 WHILE (a # NIL) & ~found DO
 L := 0; R := a.m; (*binary search*)
 WHILE L < R DO
 i := (L+R) DIV 2;
 IF x <= a.e[i].key THEN R := i ELSE L := i+1 END
 END ;
 IF (R < a.m) & (a.e[R].key = x) THEN found := TRUE
 ELSIF R = 0 THEN a := a.p0 ELSE a := a.e[R-1].p
 END
 END ;
 p := a; k := R
END search;

PROCEDURE insert(x: INTEGER; a: Page; VAR h: BOOLEAN; VAR v: Entry);
 (*a # NIL. Search key x in B-tree with root a; if found, increment counter.
 Otherwise insert new item with key x. If an entry is to be passed up,
 assign it to v. h := "tree has become higher"*)
 VAR i, L, R: INTEGER;
 b: Page; u: Entry;
BEGIN (*a # NIL & ~h*)
 L := 0; R := a.m; (*binary search*)
 WHILE L < R DO
 i := (L+R) DIV 2;
 IF x <= a.e[i].key THEN R := i ELSE L := i+1 END
 END ;
 IF (R < a.m) & (a.e[R].key = x) THEN (*found*) INC(a.e[R].data)
 ELSE (*item not on this page*)
 IF R = 0 THEN b := a.p0 ELSE b := a.e[R-1].p END ;
 IF b = NIL THEN (*not in tree, insert*)
 u.p := NIL; h := TRUE; u.key := x
 ELSE insert(x, b, h, u)
 END ;
 IF h THEN (*insert u to the left of a.e[R]*)
 IF a.m < 2*N THEN
 h := FALSE; i := a.m;
 WHILE i > R DO DEC(i); a.e[i+1] := a.e[i] END ;
 a.e[R] := u; INC(a.m)
 ELSE NEW(b); (*overflow; split a into a,b and assign the middle entry to v*)
 IF R < N THEN (*insert in left page a*)
 i := N-1; v := a.e[i];
 WHILE i > R DO DEC(i); a.e[i+1] := a.e[i] END ;
 a.e[R] := u; i := 0;
 WHILE i < N DO b.e[i] := a.e[i+N]; INC(i) END
 ELSE (*insert in right page b*)
 DEC(R, N); i := 0;
 IF R = 0 THEN v := u
 ELSE v := a.e[N];
 WHILE i < R-1 DO b.e[i] := a.e[i+N+1]; INC(i) END ;
 b.e[i] := u; INC(i)
 END ;
 WHILE i < N DO b.e[i] := a.e[i+N]; INC(i) END
 END ;
 a.m := N; b.m := N; b.p0 := v.p; v.p := b
 END
 END
 END
END insert;

PROCEDURE underflow(c, a: Page; s: INTEGER; VAR h: BOOLEAN);
 (*a = underflowing page, c = ancestor page,
 s = index of deleted entry in c*)
 VAR b: Page;

 99

 i, k: INTEGER;
BEGIN (*h & (a.m = N-1) & (c.e[s-1].p = a) *)
 IF s < c.m THEN (*b := page to the right of a*)
 b := c.e[s].p; k := (b.m-N+1) DIV 2; (*k = nof items available on page b*)
 a.e[N-1] := c.e[s]; a.e[N-1].p := b.p0;
 IF k > 0 THEN (*balance by moving k-1 items from b to a*) i := 0;
 WHILE i < k-1 DO a.e[i+N] := b.e[i]; INC(i) END ;
 c.e[s] := b.e[k-1]; b.p0 := c.e[s].p;
 c.e[s].p := b; DEC(b.m, k); i := 0;
 WHILE i < b.m DO b.e[i] := b.e[i+k]; INC(i) END ;
 a.m := N-1+k; h := FALSE
 ELSE (*merge pages a and b, discard b*) i := 0;
 WHILE i < N DO a.e[i+N] := b.e[i]; INC(i) END ;
 i := s; DEC(c.m);
 WHILE i < c.m DO c.e[i] := c.e[i+1]; INC(i) END ;
 a.m := 2*N; h := c.m < N
 END
 ELSE (*b := page to the left of a*) DEC(s);
 IF s = 0 THEN b := c.p0 ELSE b := c.e[s-1].p END ;
 k := (b.m-N+1) DIV 2; (*k = nof items available on page b*)
 IF k > 0 THEN i := N-1;
 WHILE i > 0 DO DEC(i); a.e[i+k] := a.e[i] END ;
 i := k-1; a.e[i] := c.e[s]; a.e[i].p := a.p0;
 (*move k-1 items from b to a, one to c*) DEC(b.m, k);
 WHILE i > 0 DO DEC(i); a.e[i] := b.e[i+b.m+1] END ;
 c.e[s] := b.e[b.m]; a.p0 := c.e[s].p;
 c.e[s].p := a; a.m := N-1+k; h := FALSE
 ELSE (*merge pages a and b, discard a*)
 c.e[s].p := a.p0; b.e[N] := c.e[s]; i := 0;
 WHILE i < N-1 DO b.e[i+N+1] := a.e[i]; INC(i) END ;
 b.m := 2*N; DEC(c.m); h := c.m < N
 END
 END
END underflow;

PROCEDURE delete(x: INTEGER; a: Page; VAR h: BOOLEAN);
 (*search and delete key x in B-tree a; if a page underflow arises,
 balance with adjacent page or merge; h := "page a is undersize"*)
 VAR i, L, R: INTEGER; q: Page;

 PROCEDURE del(p: Page; VAR h: BOOLEAN);
 VAR k: INTEGER; q: Page; (*global a, R*)
 BEGIN k := p.m-1; q := p.e[k].p;
 IF q # NIL THEN del(q, h);
 IF h THEN underflow(p, q, p.m, h) END
 ELSE p.e[k].p := a.e[R].p; a.e[R] := p.e[k];
 DEC(p.m); h := p.m < N
 END
 END del;

BEGIN (*a # NIL*)
 L := 0; R := a.m; (*binary search*)
 WHILE L < R DO
 i := (L+R) DIV 2;
 IF x <= a.e[i].key THEN R := i ELSE L := i+1 END
 END ;
 IF R = 0 THEN q := a.p0 ELSE q := a.e[R-1].p END ;
 IF (R < a.m) & (a.e[R].key = x) THEN (*found*)
 IF q = NIL THEN (*a is leaf page*)
 DEC(a.m); h := a.m < N; i := R;
 WHILE i < a.m DO a.e[i] := a.e[i+1]; INC(i) END
 ELSE del(q, h);
 IF h THEN underflow(a, q, R, h) END

 100

 END
 ELSE delete(x, q, h);
 IF h THEN underflow(a, q, R, h) END
 END
END delete;

PROCEDURE Search*(key: INTEGER; VAR data: INTEGER);
BEGIN search(key, root, data)
END Search;

PROCEDURE Insert*(key: INTEGER; VAR data: INTEGER);
 VAR h: BOOLEAN; u: Entry; q: Page;
BEGIN h := FALSE; u.data := data; insert(key, root, h, u);
 IF h THEN (*insert new base page*)
 q := root; NEW(root);
 root.m := 1; root.p0 := q; root.e[0] := u
 END
END Insert;

PROCEDURE Delete*(key: INTEGER);
 VAR h: BOOLEAN;
BEGIN h := FALSE; delete(key, root, h);
 IF h THEN (*base page size underflow*)
 IF root.m = 0 THEN root := root.p0 END
 END
END Delete;

BEGIN NEW(root); root.m := 0
END BTree.

The B-tree is also a highly appropriate structure for enumerating its elements, because during the
traversal of the tree each page is visited exactly once, and hence needs to be read (from disk)
exactly once too. The traversal is programmed by the procedure Enumerate and uses recursion.
It calls the parametric procedure proc for each element of the tree. The type of proc specifies as
parameters the name and the (address of) the enumerated element. The third parameter
continue is a Boolean VAR-parameter. If the procedure sets it to FALSE, the process of
enumeration will be aborted.

Enumerate is used for obtaining listings of the names of registered files. For this purpose, the
actual procedure substituted for proc merely enters the given name in a text and ignores the
address (sector number) of the file, unless it requires special file information such as the file's
size or creation date.

The set of visited elements can be restricted by specifying a string which is to be a prefix to all
enumerated names. The least name with the specified prefix is directly searched and is the name
(key) of the first element enumerated. The process then proceeds up to the first element whose
name does not have the given prefix. Thereby, the process of obtaining all elements whose key
has a given prefix avoids traversal of the whole tree, resulting in a significant speedup. If the
prefix is the empty string, the entire tree is traversed.

The principle behind procedure Enumerate is shown by the following sketch, where we abstract
from the B-tree structure and omit consideration of prefixes:

PROCEDURE Enumerate(
 proc: PROCEDURE (name: FileName; adr: INTEGER; VAR continue: BOOLEAN));
 VAR continue: BOOLEAN; this: DirEntry;
BEGIN continue := TRUE; this := FirstElement;
 WHILE continue & (this # NIL) DO
 proc(this.name, this.adr, continue); this := NextEntry(this)
 END
END Enumerate

 101

From this sketch we may conclude that during the process of traversal the tree structure must not
change, because the function NextEntry quite evidently relies on the structural information stored
in the elements of structure itself. Hence, the actions of the parametric procedure must not affect
the tree structure. Enumeration must not be used, for example, to delete a given set of files. In
order to prevent the misuse of the indispensible facility of element enumeration, the interface of
FileDir is not available to users in general.

The handling of the directory stored on disk follows exactly the same algorithms. The accessed
pages are fetched from the disk as a whole (each page fits onto a single disk sector) and stored
in buffers of type DirPage, from where individual elements can be accessed. In principle, these
buffers can be local to procedures insert and delete. A single buffer is allocated globally, namely
the one used by procedure Search. The reason for this exception is not only that iterative
searching requires one buffer only, but because procedure Files.Old and in turn Search may be
called when the processor is in the supervisor mode and hence uses the system- (instead of the
user-) stack, which is small and would not accommodate sector buffers.

Naturally, an updated page needs to be stored back onto disk. Omission of sector restoration is a
programming error that is very hard to diagnose, because some parts of the program are
executed very rarely, and hence the error may look sporadic and mistakenly be attributed to
malfunctioning hardware.

Oberon's file directory represents a single, ordered set of name-file pairs. It is therefore also
called a flat directory. Its internal tree structure is not visible to the outside. In contrast, some file
systems use a directory with a visible tree structure, notably UNIX. In a search, the name (key)
guides the search path; the name itself displays structure, in fact, it is a sequence of names
(usually separated by slashes or periods). The first name is then searched in the root directory,
whose descendants are not files but subdirectories. The process is repeated, until the last name
in the sequence has been used (and hopefully denotes a file).

Since the search path length in a tree increases with the logarithm of the number of elements,
any subdivision of the tree inherently decreases performance since log(m + n) < log(m) + log (n)
for any m, n > 1. It is justified only if there exist sets of elements with common properties. If these
property values are stored once, namely in the subdirectory referencing all elements with
common property values, instead of in every element, not only a gain in storage economy results,
but possibly also in accesses which depend on those properties. The common properties are
typically an owner's name, a password, and access rights (read or write protection), properties
that primarily have significance in a multi-user environment. Since Oberon was conceived
explicitly as a single-user system, there is little need for such facilities, and hence a flat directory
offers the best performance with a simple implementation.

Every directory operation starts with an access to the root page. An obvious measure for
improving efficiency is to store the root page "permanently" in main store. We have chosen not to
do this for four reasons:

1. If the hardware fails, or if the computer is switched off before the root page is copied to disk,
the file directory will be inconsistent with severe consequences.

2. The root page has to be treated differently from other pages, making the program more
complex.

3. Directory accesses do not dominate the computing process; hence, any improvement would
hardly be noticeable in overall system performance. The payoff for the added complexity would
be small.

4. Procedure Init is called upon system initialization in order to construct the sector reservation
table. Therefore, this procedure (and the module) must be allowed to refer to the structure of a
file's sector table(s), which is achieved by placing its definitions into the module FileDir (instead of
Files). Unlike Enumerate, Init traverses the entire B-tree. The sector numbers of files delivered by
TraverseDir are entered into a buffer. When full, the entries are sorted, whereafter each file's
head sector is read and the sectors indicated in its sector table are marked as reserved. The

 102

sorting speeds up the reading of the header sectors considerably. Nevertheless, the initialization
of the sector reservation table clearly dominates the start-up time of the computer. For a file
system with 10'000 files it takes in the order of 15s to record all files.

7.5. The toolbox of file utilities
We conclude this Chapter with a presentation of the commands which constitute the toolbox for
file handling. These commands are contained in the tool module System, and they serve to copy,
rename, and delete files, and to obtain excerpts of the file directory.

Procedures CopyFiles, RenameFiles, and DeleteFiles all follow the same pattern. The parameter
text is scanned for file names, and for each operation a corresponding procedure is called. If the
parameter text contains an arrow, it is interpreted as a pointer to the most recent text selection
which indicates the file name. In the cases of CopyFiles and RenameFiles which require two
names for a single action, the names are separated by "=>" indicating the direction of the copy or
rename actions.

Procedure Directory serves to obtain excerpts of the file directory. It makes use of procedure
FileDir.Enumerate. The parametric procedure List tests whether or not the delivered name
matches the pattern specified by the parameter of the directory command. If it matches, the name
is listed in the text of the viewer opened in the system track. Since the pattern may contain one or
several asterisks (wild cards), the test consists of a sequence of searches of the pattern parts
(separated by the asterisks) in the file name. In order to reduce the number of calls of List,
Enumerate is called with the first part of the pattern as parameter prefix. Enumeration then starts
with the least name having the specified prefix, and terminates as soon as all names with this
prefix have been scanned.

If the specified pattern is followed by an option directive "!", then not only file names are listed, but
also the listed files' creation date and length. This requires that not only the directory sectors on
the disk are traversed, but that additionally for each listed file its header sector must be read. The
two procedures use the global variables pat and diroption.

References
1. R. Bayer and E. M. McCreight. Organization and maintenance of large ordered indexes. Acta

Informatica, 1, 3, (1972), 173-189.

2. D. Comer. The ubiquitous B-tree. ACM Comp Surveys, 11, 2, (June 1979), 121-137.

 103

8 Storage layout and management

8.1. Layout and run-time organization
A crucial property of the Oberon System is centralized resource management. Its advantage is that
replication of management algorithms and a premature partitioning of resources are avoided. The
disadvantage is that management algorithms are fixed once and forever and remain the same for
all applications. The success of a centralized resource management therefore depends crucially on
its flexibility and its efficient implementation. This chapter presents the scheme and the algorithms
governing main storage in the Oberon System.

The storage layout of the Oberon System is determined by the structure of code and data typical in
the use of modular, high-level programming languages, and in particular of the language Oberon. It
suggests the subdivision of storage into three areas.

1. The module space. Every module specifies procedures (code) and global (static) variables. Its
initialization part can be regarded as a procedure implicitly called after loading. Upon loading, space
must be allocated for code and data. Typically, modules contain very few or no global variables,
hence the size of the allocated space is primarily determined by the code. The combined code and
data space is called a block. Blocks are allocated in the module space by the loader.

2. The workspace (stack). Execution of every command invokes a sequence of procedures, each of
which uses (possibly zero) parameters and local variables. Since procedure calls and completions
follow a strict first-in last-out order, the stack is the uniquely suited strategy for storage allocation for
local data. Deallocation upon completion of a procedure is achieved by merely resetting the pointer
identifying the top of the stack. Since this operation is performed by a single instruction, it costs
virtually no time. Because Oberon is a single-process system, a single stack suffices. Furthermore,
after completion of a command, the stack is empty. This fact will be important in simplifying the
scheme for reclamation of dynamically allocated space.

3. The dynamic space (heap). Apart from global (static) variables, and local (stack-allocated)
variables, a program may refer to anonymous variables referenced through pointers. Such
variables are allocated truly dynamically through calls of an explicit operation (NEW). These
variables are allocated in the so-called heap. Their deallocation is "automatic", when free storage is
needed and they are no longer referenced from any of the loaded modules. This process is called
garbage collection. Every record allocated in the heap contains a (hidden) pointer to the descriptor
of its type called the type tag. It is used by the garbage collector.

Unfortunately, the number of distinct spaces is larger than two. If it were two, no arbitrary size
limitation would be necessary; merely the sum of their sizes would be inherently limited by the size
of the store. In the case of three spaces, arbitrarily determined size limits are unavoidable. Address-
mapping hardware can alleviate (and delegate) this problem using a virtual address space which is
so large that limits will hardly ever be reached.

Such a scheme is implemented by tables mapping virtual into physical addresses, requiring multiple
memory accesses for every reference. Of course, the need for a double or a triple access for every
memory reference is avoided by a translation cache in the (hardware) unit. Nevertheless, a
decrease in performance is unavoidable for each cache miss. Furthermore, an additional subcycle
is required for every access in order to look up the cached translation table. Without a virtual
address scheme, each module block must consist of an integral number of physically adjacent
pages. Holes generated by the release of modules must be reused. We employ the simple scheme
of marking the released space as a hole, and of allocating a new block in the first hole encountered
that is large enough (first-fit strategy). Considering the relative infrequency of module releases,
efforts to improve the strategy are not worth the resulting added complexity.

It is remarkable that the code for module allocation and release without virtual addressing is only
marginally more complicated than with it. The only remaining advantages of an MMU are a better

 104

storage utilization, because no holes occur (a negligible advantage), and that inadvertent
references to unloaded modules, e.g. via installed procedures, lead to an invalid address trap.

It is worth recalling that the concept of address mapping was introduced as a requirement for virtual
memory implemented with disks as backing store, where pages could be moved into the
background in order to obtain space for newly required pages, and could then be retrieved from
disk on demand, i.e. when access was requested. This scheme is called demand paging. It is not
used in the Oberon system, and one may fairly state that demand paging has lost its significance
with the availability of large, primary stores.

Experience in the use of the RISC predecessor Ceres leads to the conclusion that whereas address
translation through an MMU was an essential feature for multi-user operating systems, it constitutes
a dispensible overkill for single-user workstations. The fact that modern semiconductor technology
made it possible to integrate the entire translation and caching scheme into a single chip, or even
into the processor itself, led to the hiding (and ignoring) of the scheme's considerable complexity.
Its side effects on execution speed are essentially unpredictable. This makes systems with MMU
virtually unusable for applications with tight real-time constraints. The RISC processor does indeed
not feature an address mapping unit.

The RISC processor features 16 registers (of 32 bits). R0 - R11 are used for expression evaluation.
R12 - R15 have fixed, system-wide usage:

R12 address of the module table MT (typically constant)
R13 base address for variables in the current module SB (static base)
R14 stack pointer SP
R15 return address LNK (fixed by RISC's BL instruction)

The used memory layout is shown in Figure 8.1.

Figure 8.1 Storage layout

8.2. Management of dynamic storage
The term dynamic storage is used here for all variables that are allocated neither statically (global
variables) nor on the stack (local variables), but through invocation of the intrinsic procedure NEW.

reserved

table MT

module blocks

heap

stack

display
frame buffer

devices

 MTOrg (in reg MT)

0 for boot parameters

 heapOrg = stackOrg

heapLimit = MemLim

AllocPtr

SP

 105

Such variables are anonymous and are referenced exclusively via pointers. The space in which
they are allocated is called the heap.

The space allocated to such dynamic variables becomes free and reusable as soon as the last
reference to it vanishes. This event is hard, and in multiprocess systems even impossible to detect.
The usual remedy is to ignore it and instead to determine the accessibility of all allocated variables
(records, objects) only at the time when more storage space is needed. This process is then called
garbage collection.

The Oberon System does not provide an explicit deallocation procedure allowing the programmer
to signal that a variable will no longer be referenced. The first reason for this omission is that
usually a programmer would not know when to call for deallocation. And secondly, this "hint" could
not be taken as trustworthy. An erroneous deallocation, i.e. one occurring when there still exist
references to the object in question, could lead to a multiple allocation of the same space with
disastrous consequences. Hence, it appears wise to fully rely on system management to determine
which areas of the store are truly reusable.

Before discussing the scheme for storage reclamation, which is the primary subject of dynamic
storage management, we turn our attention to the problem of allocation, i.e. the implementation of
procedure NEW. The simplest solution is to maintain a list of free blocks and to pick the first one
large enough. This strategy leads to a relatively large fragmentation of space and produces many
small elements, particularly in the first part of the list. We therefore employ a somewhat more
refined scheme and maintain four lists of available space. Three of them contain pieces of fixed
size, namely 32, 64, and 128 bytes. The fourth list contains pieces whose size is any multiple of
256. We note that the choice of the values permits the merging of any two contiguous elements into
an element of the next list. This scheme keeps fragmentation, i.e. the emergence of small pieces in
large numbers, reasonably low with minimal effort. The body of procedure NEW consists of
relatively few instructions, and typically only a small fraction of them needs to be executed.

The statement NEW(p) is compiled into an instruction sequence assigning the address of pointer
variable p to a fixed register (R0) and the type tag to another register (R1). The type tag is a pointer
to a type descriptor containing information required by the garbage collector. This includes the size
of the space occupied and now to be allocated. The effect of NEW is the assignment of the address
of the allocated block to p, and the assignment of the tag to a prefix of the block. (see Fig. 8.2)

Figure 8.2 Allocation of dynamic variable p^ in the heap by procedure NEW(p)

In conclusion, we emphasize that this scheme makes the allocation of an object very efficient.
Nevertheless, it is considerably more costly than that of a variable explicitly declared and therefore
allocated either globally or on the stack.

We now turn to the problem of storage reclamation or garbage collection. There exist two
essentially different schemes: the reference counting and the mark-scan schemes. In the former,
every object carries a (hidden) reference count, indicating the number of existing references to it.
The scheme works as follows:

1. NEW(p) initializes the reference count of p^ to 1.

p

tag

variable
p^

size type
descriptor

 106

2. An assignment q := p decrements the reference count of q^ by 1, performs the assignment,
then increments the reference count of p^ by 1. When a reference count reaches zero, the
element is linked into the free list.

There are two disadvantages inherent in this approach. The first is the non-negligible overhead in
pointer assignments. The second is that circular data structures never become recognized as free,
even if no external references point to their elements.

The Oberon system employs the second scheme which involves no hidden operations like the
reference counting scheme, but relies on a process initiated when free storage has become scarce
and more is needed. It consists of two phases. In the first phase, all referenced and therefore still
accessible elements are marked. In the second phase, their unmarked complement is released.
The first phase is called the mark phase, the second the scan phase. Its primary disadvantage is
that the process may be started at moments unpredictable to the system's user. During the
process, the computer then appears to be blocked. It follows that an interactive system using mark-
scan garbage collection must guarantee that the process is sufficiently fast in order to be hardly
noticeable. Modern processors make this possible, even with large main stores. Nevertheless,
finding all accessible nodes in an entire computer system within, say, a second appears to be a
formidable feat.

We recognize that the mark phase essentially is a tree traversal, or rather a forest traversal. The
roots of the trees are all named pointer variables in existence. We shall postpone the question of
how these roots are to be found, and first present a quick tutorial about tree traversal. In general,
nodes of the traversed structure may contain many pointers (branches). We shall, however, first
restrict our attention to a binary tree, because the essential problem and its solution can be
explained better in this way.

The essential problem alluded to is that of storage utilization by the traversal algorithm itself.
Typically, information about the nodes already visited must be retained, be it explicitly, or implicitly
as in the case of use of recursion. Such a strategy is plainly unacceptable, because the amount of
storage needed is unpredictable and may become very large, and because garbage collection is
typically initiated just when more storage is unavailable. The task may seem impossible, yet a
solution lies in the idea of inverting pointers along the path traversed, thus keeping the return path
open. It is embodied in the following procedure, whose task is to traverse the tree given by the
parameter root, and to mark every node. Mark values are assumed to be initially 0. Let the data
structure be defined by the types

Ptr = POINTER TO Node;
Node = RECORD m: INTEGER; L, R: Ptr END;

and the algorithm by the procedure
PROCEDURE traverse(root: Ptr);
 VAR p, q, r; Ptr;
BEGIN p := root; q := root;
 REPEAT (* p # NIL *) INC(p.m); (*mark*)
 IF p.L # NIL THEN (*pointer rotation*)
 r := p.L; p.L := p.R; p.R := q; q := p; p := r
 ELSE
 p.L := p.R; p.R := q; q:= NIL
 END
 UNTIL p = q
END traverse

We note that only three local variables are required, independent of the size of the tree to be
traversed. The third, r, is in fact merely an auxiliary variable to perform the rotation of values p.L,
p.R, q, and p as shown in Fig. 8.3. A snapshot of a tree traversal is shown in Fig. 8.4.

 107

.Figure 8.3 Rotation of four pointers

Figure 8.4 Tree traversal (original at left, snapshot at right)

The pair p, q of pointers marks the position of the process. The algorithm traverses the tree in a left
to right, depth first fashion. When it returns to the root, all nodes have been marked.

How are these claims convincingly supported? The best way is by analyzing the algorithm at an
arbitrary node. We start with the hypothesis H that, given the initial state P, the algorithm will reach
state Q, (see Fig 8.5).

State Q differs from P by the node and its descendants B and C having been marked, and by an
exchange of p and q. We now apply the algorithm to state P, assuming that B and C are not empty.
The process is illustrated in Fig 8.5. P0 stands for P in Fig. 8.4.

Figure 8.5 Transition from state P to Q

Transitions P0 → P1, P2 → P3, and P4 → P5 are the direct results of applying the pointer rotation
as specified by the sequence of five assignments in the algorithm. Transitions P1 → P2 and P3 →
P4 follow from the hypothesis H being applied to the states P1 and P3: subtrees are marked and p,
q interchanged. We note in passing that the node is visited three times. Progress is recorded by the
mark value which is incremented from 0 to 3.

Fig. 8.6. demonstrates that, if H holds for steps P1 → P2 and P3 → P4, then it also holds for step
P0 → P5, which visits the subtree p. Hence, it also holds for the step root → root, which traverses
the entire tree.

p.L p.R

p q

0

0

0

0 0

0

0

2

3

3

3 0

1

3

p

q

0

q
p

3

p
q

A A

B BC C

 108

Figure 8.6 Transitions from P0 to P5, visiting nodes 3 times

This proof by recursion relies on the algorithm performing correct transitions also in the case of p.L
being NIL, i.e. B being the empty tree. In this case, state P1 is skipped; the first transition is P0 →
P2 (see Figure 8.7).

If p.L is again NIL, i.e. also C is empty, the next transition is P2 → P4. This concludes the
demonstration of the algorithm's correctness.

Figure 8.7 Direct transition from P0 to P2, if p.L = NIL

We now modify the algorithm of tree traversal to the case where the structure is not confined to a
binary tree, but may be a tree of any degree, i.e. each node may have any number n of
descendants. For practical purposes, however, we restrict n to be in the range 0 ≤ n ≤ N, and
therefore may represent all nodes by the type

Node = RECORD m, n: INTEGER;
 dsc: ARRAY N OF Node
 END

In principle, the binary tree traversal algorithm might be adopted almost without change, merely
extending the rotation of pointers from p.L, p.R, q, p to p.dsc[0], ... , p.dsc[n-1], q, p. However, this

L R
0

q
p

A

B C

P0

 R
1 L

q
p

A

B C

P1

 R
1 L

p
q

A

B C

P2

 L
R 2

q
p

A

B C

P3

 L
R 2

p
q

A

B C

P4

 L R
 3

p
q

A

B C

P5

L R
0

q
p

A

C

P0

 R
1 L

p
q=NIL

A

C

P2

 109

would be an unnecessarily inefficient solution. The following is a more effective variant. Moreover, it
caters for the case of inhomogeneous graphs, where different nodes have different numbers of
descendants. The key lies in associating with every node, in addition to the tag, a second private
field mk. It serves two purposes. The first is as a mark, with mk > 0 indicating that the node had
been visited. The second is to store the address of the next descendant to be visited. The
underlying data structure is shown in Figure 8.8. Type descriptors consist of the following fields:

size in bytes, of the described record type,
base a table of pointers to the descriptors of the base types (3 elements only)
offsets of the descendant pointers in the described type (1 word each)

Figure 8.8 Record and its type descriptor

We note that the mark value, starting with zero (unmarked), is used as a counter of descendants
already traversed, and hence as an index to the descendant field to be processed next. The
algorithm can be applied not only to trees, but to arbitrary structures, including circular ones, if the
continuation condition p # 0 (actually p >= heapOrg) is extended to (p >= heapOrg) & (offadr = 0).
This causes a descendant that is already marked to be skipped. Here the array M stands for the
entire memory.

PROCEDURE traverse(root: Ptr);
 VAR offadr, offset: INTEGER; p, q, r: Ptr;
BEGIN p := root; q := root;
 REPEAT (* p # NIL*) offadr := p.mk; (*mark*)
 IF offadr = 0 THEN tag := p.tg; offadr := tag + 16 ELSE INC(offadr, 4) END ;
 p. mk := offadr; offset := M[offadr];
 IF offset # -1 THEN (*move down*)
 r := M[p+offset]; offadr := M[r-4];;
 IF offadr = 0 THEN M[p+offset] := q; q := p; p := r END
 ELSE (*move up*)
 offadr := M[q-4];offset := M[offadr]
 IF p # q THEN r := M[q+offset]; M[q+offset] := p; p := q; q := r END
 END
 UNTIL (p = q) & (offset = -1)
END traverse;

The mark is included in each record's hidden prefix. The prefix takes 2 words only; the first is used
for the tag. The other is reserved for the garbage collector and used as mark and offset address.
The end of the list of descendant pointers is marked by an entry with value -1. And finally,
assignments involving M are expressed as

SYSTEM.GET(a, x) for x := M[a]
SYSTEM.PUT(a, x) for M[a] := x

tg

mk

data
p

size

3 tags
to

extens

24
40

field
offsets

-1

16

record type descriptor

q0

q1

24

40

 110

The scan phase is performed by a relatively straight-forward algorithm. The heap, i.e. the storage
area between HeapOrg and HeapLimit (the latter is a variable), is scanned element by element,
starting at HeapOrg. Elements marked are unmarked, and unmarked elements are freed by linking
them into the appropriate list of available space.

As the heap may always contain free elements, the scan phase must be able to recognize them in
order to skip them or merge them with an adjacent free element. For this purpose, the free
elements are also considered as prefixed. The prefix serves to determine the element's size and to
recognize it as free due to a special (negative) mark value. The encountered mark values and the
action to be taken are:

mk value state action

= 0 unmarked collect, mark free
> 0 marked unmark
< 0 free skip or merge

8.3. The Kernel
The kernel lies at the bottom of the module hierarchy. It contains the procedures for dynamic
storage allocation and retrieval as described before. The procedures are New, Mark, and Scan.

Kernel also contains the driver routines for the disk. They are used by modules FileDir and Files.
The "disk" is actually an SD-card, a high-volume flash-RAM. It is accessed purely sequentially,
byte-wise, by a standard, serial peripheral interface (SPI). Within Kernel a table called SectorMap is
allocated keeping track of blocks (sectors) occupied by files. A single bit indicates, whether a sector
is allocated or not. This table is accessed by the procedures AllocSector, MarkSector, and
FreeSector. Reading and writing is done sector-wise by procedures GetSector and PutSector.
Sector numbers are always a multiple of 29 for the purpose of redundancy checks.

Furthermore, the kernel contains a timer counting milliseconds and, perhaps, a real time clock,
showing date and time. Clock data are packed into a single word as follows:

Figure 8.9 Encoding of date and time (year starting with 2000)

DEFINITION Kernel; (*NW/PR 11.4.86 / 27.12.95 / 15.5.2013*)
 CONST SectorLength = 1024;
 TYPE Sector = ARRAY SectorLength OF BYTE;
 VAR allocated, NofSectors: INTEGER;
 heapOrg, heapLim: INTEGER;
 stackOrg, MemSize: INTEGER;
 PROCEDURE New(VAR ptr: INTEGER; tag: INTEGER);
 PROCEDURE Mark(pref: INTEGER);
 PROCEDURE Scan;
 PROCEDURE ResetDisk;
 PROCEDURE MarkSector(sec: INTEGER);
 PROCEDURE FreeSector(sec: INTEGER);
 PROCEDURE AllocSector(hint: INTEGER; VAR sec: INTEGER);
 PROCEDURE GetSector(src: INTEGER; VAR dest: Sector);
 PROCEDURE PutSector(dest: INTEGER; VAR src: Sector);
 PROCEDURE Time(): INTEGER; (*milliseconds*)
 PROCEDURE Clock(): INTEGER;
 PROCEDURE SetClock(dt: INTEGER);
 PROCEDURE Install(adr, procadr: INTEGER);
 PROCEDURE Init;
END Kernel.

6 4 5 5 6 6

year month day hour minute second

 111

8.4. The storage management's toolbox
The user can obtain information about the system's state and resources through its toolbox, a set of
commands contained in the too module System. These commands are:
 PROCEDURE Watch;
 PROCEDURE Collect; / n
 PROCEDURE SetClock; / year, month, day, hour, minute, second

Command Watch shows the amount of storage occupied in the heap, the number of disk sectors
allocated on the disk, and the number of tasks installed. The command Collect allows to control the
frequency of garbage collections. The number n indicates how many commands are executed
before the next garbage collection.

 112

9 Device drivers

9.1. Overview
Device drivers are collections of procedures that constitute the immediate interface between
hardware and software. They refer to those parts of the computer hardware that are usually called
peripheral. Computers typically contain a system bus which transmits data among its different parts.
Processor and memory are considered as its internal parts; the remaining parts, such as disk,
keyboard, display, etc, are considered as external or peripheral, notwithstanding the fact that they
are often contained in the same cabinet or board.

Such peripheral devices are connected to the system bus via special registers (data buffers) and
transceivers (switches, buffers in the sense of digital electronics). These registers and transceivers
are addressed by the processor in the same way as memory locations - they are said to be
memory-mapped - and they constitute the hardware interface between processor bus and device.
References to them are typically confined to specific driver procedures which constitute the
software interface.

Drivers are inherently hardware specific, and the justification of their existence is precisely that they
encapsulate these specifics and present to their clients an appropriate abstraction of the device.
Evidently, this abstraction must still reflect the essential characteristics of the device, but not the
details (such as e.g. the addresses of its interface registers).

Our justification to present the drivers connecting the Oberon system with the RISC computer in
detail is on the one hand the desire for completeness. But on the other hand it is also in recognition
of the fact that their design represents an essential part of the engineering task in building a
system. This part may look trivial from a conceptual point of view; it certainly is not so in practice.

In order to reduce the number of interface types, standards have been established. The RISC
computer also uses such interface standards, and we will concentrate on them in the following
presentations. The following devices are presented:

1. The Keyboard is considered as a serial device delivering one byte of input data per key stroke. It
is connected by a serial line according to the PS/2 and ASCII (American Standard Code for
Information Interchange) standards. The software is contained in module Input (Sect. 9.2), and the
hardware is explained in Sect. 17.2.1.

2. The Mouse is a pointing device delivering coordinates in addition to key states. The software is
also part of module Input (Sect. 9.2).

3. Display. The interface to the display is an area of memory that contains the displayed
information, exactly one bit per pixel for a monochrome display. This area is called frame buffer or
bitmap Here the size is of the display area is 768 lines and 1024 dots per line, representing a
raster. The software is module Display, which primarily consists of operations to draw frequently
occurring patterns. These operations are called raster-ops. They are explained in Section 4.5. The
actual display requires a hardware interface called a display controller. The connection between the
controller and the display follows the VGA-Standard (see Sect. 17.2.4).

4. Disk. Our RISC computer does not use a magnetic, rotating disk for storing non-volatile data.
Instead, it uses an SD-card (flash-RAM). The driver is contained in module Kernel (Section 8.3).
The hardware is discussed in Sect. 17.2.2.

5. Net. In the original text, a network was presented consisting of a bus connecting many
computers, based on the RS-485 standard. It was implemented by the serial communications
controller Zilog 8530, operating at a frequency of 230 Kb/s. The name SCC has been retained as a
generic interface, behind which the packet transport has now been re-implemented as a simple
wireless network (Nordic nRF24L01 controller) in the regulation-free 2.4GHz
industrial/scientific/medical (ISM) frequency band.

 113

In all driver modules the implementation-dependent procedures SYSTEM.PUT, SYSTEM.GET, and
SYSTEM.BIT are used to access the registers of the device interface. Their first parameter is the
address of the register, the second an expression or variable.

9.2. Keyboard and mouse
The driver procedures for the keyboard and the mouse are located in module Input. Available()
signals that a character has been typed on the keyboard, if its value is greater than 0. The
character is read by calling Read(ch). Module Input is restricting the data to the ASCII character set
Latin-1, i.e. the values lie in the range 0X <= ch < 80X (7-bit values). Mouse(k, x, y) yields the
current state of the mouse keys and the mouse's coordinates.

MODULE Input;
 PROCEDURE Available(): INTEGER;
 PROCEDURE Read(VAR ch: CHAR);
 PROCEDURE Mouse(VAR keys: SET; VAR x, y: INTEGER);
 PROCEDURE SetMouseLimits(w, h: INTEGER);
 PROCEDURE Init;
END Input.

The driver software accesses the keyboard via the Standard PS/2 interface represented by an 8-bit
register for the received data kbdCode, and a single-bit flag indicating whether a byte had been
received.

The keyboard codes received from the keyboard via a PS/2 line are not identical with the character
values delivered to the Read procedure. A conversion is necessary. This is so, because modern
keyboards treat all keys in the same way, including the ones for upper case, control, alternative,
etc. Separate codes are sent to signal the pushing down and the release of a key, followed by
another code identifying which key had been pressed or released. This requires, besides a
translation table from codes to characters, a set of state variables. They are the global, Boolean
variables Recd, Up, Shift, Ctrl, and Ext. Procedure Peek determines whether an actual character is
present, or merely a code signalling a key shift. Peek controls the state.

Procedure Mouse fetches a word from the mouse interface register and decomposes it into its
components (key state and coordinates). (kb is the bit indicating whether a code had been received
from the keyboard).

Fig. 9.1 Format of the mouse register

9.3. The SD-card (disk)
SD-card are high-volume memory devices based on flash-store technology. They are typically
organized as individually accessible blocks of 1K bytes. The driver for the SD-card is contained in
module Kernel, which also handles allocation and reservation of blocks, here in analogy to rotating
disks still called sectors.

TYPE Sector = ARRAY SectorLength OF BYTE;
PROCEDURE GetSector(src: INTEGER; VAR dst: Sector);
PROCEDURE PutSector(dst: INTEGER; VAR src: Sector);
PROCEDURE AllocSector(hint: INTEGER; VAR sec: INTEGER);
PROCEDURE MarkSector(sec: INTEGER);
PROCEDURE FreeSector(sec: INTEGER);

keys y x

12 12

kb

7 1

 114

Data transfer is sequebtial and handled by procedures ReadSD and WriteSD by issuing
commands. These are for transmitting a block address, for receiving, and for sending a block of
data. Synchronous transmission of sequences of words follows the SPI standard, which uses 3
lines, one for data input, one for dats output, and one for the clock (see also Section 17.2.2). The
hardware interface contains a 32-bit register. The bit-rate is 8.3 MB/s.

9.4. Serial asynchronous interface (RS 232)
The RS-232 standard serves to transmit sequences of bytes over a data line asynchronously. This
implies that there is no separate clock line (see also Section 17.2.3). The hardware interface
contains a 10-bit register for the transmitter and one for the receiver. The data rate used here is
19200 bit/s. A byte is sent and received over the line by the following programs.

CONST data = -56; stat = -52; (*device register addresses*)

PROCEDURE Send(x: BYTE);
BEGIN
 REPEAT UNTIL SYSTEM.BIT(stat, 1);
 SYSTEM.PUT(data, x)
END Send;

PROCEDURE Rec(VAR x: BYTE);
BEGIN
 REPEAT UNTIL SYSTEM.BIT(stat, 0);
 SYSTEM.GET(data, x)
END Rec;

These procedures are used in the driver module RS232 presented in Section 15.2. This module
itself is not used in the Oberon core, but it was instrumental in building the System on a host
computer and downloading it. It is characterized by a very simple interface.

9.5. Serial communications controller (SCC)
The interface of the driver for the network was taken over from the original design using a serial
communocations controller Zilog 8530. The implementation changed totally. It was designed by
Paul Reed for the wireless controller Nordic nRF24L01.

DEFINITION SCC;

 TYPE Header =
 RECORD valid: BOOLEAN; dadr, sadr, typ: BYTE;
 len: INTEGER; (*of data following header*)
 END ;

 PROCEDURE Start(filter: BOOLEAN);
 PROCEDURE Send(VAR head: Header; buf: ARRAY OF BYTE);
 PROCEDURE Available(): INTEGER;
 PROCEDURE ReceiveHead(VAR head: Header);
 PROCEDURE Receive(VAR x: BYTE);
 PROCEDURE Skip(m: INTEGER);
 PROCEDURE Stop;

END SCC.

 1

10. The Network

10.1. Introduction
Workstations are typically, but not always, connected in a local environment by a network. There
exist two basically different views of the architecture of such nets. The more demanding view is that
all connected stations constitute a single, unified workspace (also called address-space), in which
the individual processors operate. It implies the demand that the "thin" connections between
processors are hidden from the users. At worst they might become apparent through slower data
access rates between the machines. To hide the difference between access within a computer and
access between computers is regarded primarily as a challenge to implementors.

The second, more conservative view, assumes that individual workstations are, although
connected, essentially autonomous units which exchange data infrequently. Therefore, access of
data on partner stations is initiated by explicit transfer commands. Commands handling external
access are not part of the basic system, but rather are implemented in modules that might be
regarded as applications.

In the Oberon System, we adhere to this second view, and in this chapter, we describe the module
Net, which is an autonomous command module based on the network driver SCC. It can be
activated on any station connected in a network, and all of them are treated as equals. Such a set
of loosely coupled stations may well operate in networks with moderate transmission rates and
therefore with low-cost hardware interfaces and twisted-pair wires.

An obvious choice for the unit of transferred data is the file. The central theme of this chapter is
therefore file transfer over a network. Some additional facilities offered by a dedicated server station
will be the subject of Chapter 11. The commands to be presented here are a few only: SendFiles,
ReceiveFiles, and SendMsg.

As explained in Chapter 2, Oberon is a single-process system where every command monopolizes
the processor until termination. When a command involves communication over a network, (at
least) two processors are engaged in the action at the same time. The Oberon paradigm therefore
appears to exclude such cooperation; but fortunately it does not, and the solution to the problem is
quite simple.

Every command is initiated by a user operating on a workstation. For the moment we call it the
master (of the command under consideration). The addressed station - obviously called the server -
must be in a state where it recognizes the command in order to engage in its execution. Since the
command - called a request - arrives in encoded form over the network, an Oberon task
represented by a handler procedure must be inserted into the event polling loop of the system.
Such a handler must have the general form

IF event present THEN handle event END

The guard, in this case, must imply that a request was received from the network. We emphasize
that the event is sensed by the server only after the command currently under execution, if any, has
terminated. However, data arrive at the receiver immediately after they are sent by the master.
Hence, any sizeable delay is inherently inadmissible, and the Oberon metaphor once again
appears to fail. It does not fail, however, because the unavoidable, genuine concurrency of sender
and receiver action is handled within the driver module which places the data into a buffer. The
driver is activated by an interrupt, and its receiver buffer effectively decouples the partners and
removes the stringent timing constraints. All this remains completely hidden within the driver
module.

10.2. The protocol
If more than a single agent participates in the execution of a command, a convention must be
established and obeyed. It defines the set of requests, their encoding, and the sequence of data

 2

exchanges that follow. Such a convention is called a protocol. Since in our metaphor, actions
initiated by the master and the server strictly follow each other in alternation, the protocol can be
defined using EBNF (extended Backus-Naur formalism), well-known from the syntax specification
of languages. Items originating from the master will be written with normal font, those originating
from the server appear in italics.

A simple form of the ReceiveFile request is defined as follows and will be refined subsequently:

ReceiveFile = SND filename (ACK data | NAK).

Here, the symbol SND represents the encoded request that the server send the file specified by the
file name. ACK signals that the request is honoured and the requested data follow. The NAK
symbol indicates that the requested file cannot be delivered. The transaction clearly consists of two
parts, the request and the reply, one from each partner.

This simple-minded scheme fails because of the limitation of the size of each transmitted portion
imposed by the network driver. We recall that module SCC restricts the data of each packet to 512
bytes. Evidently, files must be broken up and transmitted as a sequence of packets. The reason for
this restriction is transmission reliability. The break-up allows the partner to confirm correct receipt
of a packet by returning a short acknowledgement. Each acknowledgement also serves as request
for the next packet. An exception is the last acknowledgement following the last data portion, which
is characterized by its length being less than the admitted maximum. The revised protocol is
defined as

ReceiveFile = SND filename (DAT data ACK {DAT data ACK} | NAK).

We now recall that each packet as defined in Section 9.3. is characterized by a type in its header.
The symbols SND, DAT, ACK, and NAK indicate this packet type. The data portions of ACK and
NAK packets are empty.

The revised protocol fails to cope with transmission errors. Correct transmission is checked by the
driver through a cyclic redundancy check (CRC), and an erroneous packet is simple discarded. This
implies that a receiver must impose a timing constraint. If an expected packet fails to arrive within a
given time period (timeout), the request must be repeated. In our case, a request is implied by an
acknowledgement. Hence, the acknowledgement must specify whether the next (normal case) or
the previously requested (error case) packet must be sent. The solution is to attach a sequence
number to each acknowledgement and to each data packet. These numbers are taken modulo 8,
although in principle modulo 2 would suffice.

With the addition of a user identification and a password to every request, and of an alternate reply
code NPR for "no permission", the protocol reaches its final form:

ReceiveFile = SND username password filename (datastream | NAK | NPR).
datastream = DAT0 data ACK1 {DATi data ACKi+1}.

The protocol for file transmission from the master to the server is defined similarly:

SendFile = REC username password filename (ACK0 datastream | NAK | NPR).
datastream = DAT0 data ACK1 {DATi data ACKi+1}.

The third request listed above, SendMsg, does not refer to any file, but merely transmits and
displays a short message. It is included here for testing the link between two partners and perhaps
for visibly acknowledging a rendered service by the message "done", or "thank you".

SendMsg = MSG message ACK.

10.3. Station addressing
Every packet must carry a destination address as well as the sender's address. Addresses are
station numbers. It would certainly be inconvenient for a user to remember the station number of a
desired partner. Instead, the use of symbolic names is preferred. We have become accustomed to
use the partner's initials for this purpose.

 3

The source address is inserted automatically into packet headers by the driver. It is obtained from a
dip switch set when a computer is installed and connected. But where should the destination
address come from? From the start we reject the solution of an address table in every workstation
because of the potential inconsistencies. The concept of a centralized authority holding a
name/address dictionary is equally unattractive, because of the updates required whenever a
person uses a different computer. Also, we have started from the premise to keep all participants in
the network equal.

The most attractive solution lies in a decentralized name service. It is based on the broadcast
facility, i.e. the possibility to send a packet to all connected stations, bypassing their address filters
with a special destination address (-1). The broadcast is used for emitting a name request
containing the desired partner's symbolic name. A station receiving the request returns a reply to
the requester, if that name matches its own symbolic name. The requester then obtains the desired
partner's address from the source address field of the received reply. The corresponding simple
protocol is:

NameRequest = NRQ partnername [NRS].

Here, the already mentioned timeout facility is indispensible. The following summarizes the protocol
developed so far:

protocol = {request}.
request = ReceiveFile | SendFile | SendMsg | NameRequest.

The overhead incurred by name requests may be reduced by using a local address dictionary. In
practice, a single entry is satisfactory. A name request is then needed whenever the partner
changes.

10.4. The implementation
Module Net is an implementation of the facilities outlined above. The program starts with a number
of auxiliary, local procedures. They are followed by procedure Serve which is to be installed as an
Oberon task, and the commands SendFiles, ReceiveFiles, and SendMsg, each of which has its
counterpart within procedure Serve. At the end are the commands for starting and stopping the
server facility.

For a more detailed presentation we select procedure ReceiveFiles. It starts out by reading the first
parameter which designates the partner station from the command line. Procedure FindPartner
issues the name request, unless the partner's address has already been determined by a previous
command. The global variable partner records a symbolic name (id) whose address is stored in the
destination field of the global variable head0, which is used as header in every packet sent by
procedure SCC.SendPacket. The variable partner may be regarded as a name cache with a single
entry and with the purpose of reducing the number of issued name requests.

If the partner has been identified, the next parameter is read from the command line. It is the name
of the file to be transmitted. If the parameter has the form name0:name1, the file stored on the
server as name0.name1 is fetched and stored locally as name1. Hence, name0 serves as a prefix
of the file name on the server station.

Thereafter, the request parameters are concatenated in the local buffer variable buf. They are the
user's name and password followed by the file name. (User name and password remain unused by
the server presented here). The command package is dispatched by the call Send(SND, k, buf),
where k denotes the length of the command parameter string. Then the reply packet is awaited by
calling ReceiveHead. If the received packet's type is DAT with sequence number 0, a new file is
established. Procedure ReadData receives the data and stores them in the new file, obeying the
protocol defined in Section 10.2. This process is repeated for each file specified in the list of file
names in the command line.

Procedure ReceiveHead(T) receives packets and discards them until one arrives from the partner
from which it is expected. The procedure represents an input filter in addition to the one provided by

 4

the hardware. It discriminates on the basis of the packets' source address, whereas the hardware
filter discriminates on the basis of the destination address. If no packet arrives within the allotted
time T, a type code -1 is returned, signifying a timeout.

Procedure ReceiveData checks the sequence numbers of incoming data packets (type 0 - 7). If an
incorrect number is detected, an ACK-packet with the previous sequence number is returned (type
16 - 23), requesting a retransmission. At most two retries are undertaken. This seems to suffice
considering that also the server does not accept any other requests while being engaged in the
transmission of a file.

The part corresponding to ReceiveFiles within procedure Serve is guarded by the condition
head1.typ = SND. Variable head1 is the recipient of headers whenever a packet is received by
ReceiveHead. First, the request's parameters are scanned. Id and pw are ignored. Then the
requested file is opened. If it exists, the transmission is handled by ReceiveData's counterpart,
procedure SendData. The time limit for receiving the next request is T1, whereas the limit of
ReceiveData for receiving the next data packet is T0. T1 is roughly T0 multiplied by the maximum
number of possible (re)transmissions. Before disengaging itself from a transaction, the sender of
data waits until no further retransmission requests can be expected to arrive. The value T0 (300)
corresponds to 1s; the time for transmission of a packet of maximum length is about 16ms.

Procedure SendFiles is designed analogously; its counterpart in the server is guarded by the
condition head1.typ = REC. The server accepts the request only if its state is unprotected (global
variable protected). Otherwise the request is negatively acknowledged with an NPR packet. We
draw attention to the fact that procedures SendData and ReceiveData are both used by command
procedures as well as by the server.

 5

11. A Dedicated file-distribution and mail-server
11.1. Concept and structure
In a system of loosely coupled workstations it is desirable to centralize certain services. A first
example is a common file store. Even if every station is equipped with a disk for permanent data
storage, a common file service is beneficial, e.g. for storing the most recent versions of system files,
reference documents, reports, etc. A common repository avoids inconsistencies which are
inevitable when local copies are created. We call this a file distribution service.

A centralized service is also desirable if it requires equipment whose cost and service would not
warrant its acquisition for every workstation, particularly if the service is infrequently used. A prime
example of this case is a printing service.

The third case is a communication facility in the form of electronic mail. The repository of messages
must inherently be centralized. We imagine it to have the form of a set of mailboxes, one for each
user in the system. A mailbox needs to be accessible at all times, i.e. also when its owner's
workstation has been switched off.

A last example of a centralized service is a time server. It allows a station's real time clock to be
synchronized with a central clock.

In passing we point out that every user has full control over his station, including the right to switch
it on and off at any time. In contrast, the central server is continuously operational.

In this chapter, we present a set of server modules providing all above mentioned services. They
rest on the basic Oberon System without module Net (see Chapter 10). In contrast to Net, module
NetServer, which handles all network communication, contains no command procedures (apart
from those for starting and stopping it). This is because it never acts as a master. The counterparts
of its server routines reside in other modules, including (an extended version of) Net, on the
individual workstations.

Routines for the file distribution service are the same as those contained in module Net, with the
addition of permission checks based on the received user names and passwords. Routines for
printing and mail service could in principle also be included in NetServer in the same way. But
considerations of reliability and timing made this simple solution appear as unattractive. A weaker
coupling in time of data transmission and data consumption is indeed highly desirable. Therefore,
data received for printing or for dispatching into mailboxes are stored (by NetServer) into temporary
files and thereafter "handed over" to the appropriate agent, i.e. the print server or the mail server.

This data-centered interface between servers - in contrast to procedural interfaces - has the
advantage that the individual servers are independent in the sense that none imports any other.
Therefore, their development could proceed autonomously. Their connection is instead a module
which defines a data structure and associated operators for passing temporary files from one server
to another. The data structure used for this purpose is the first-in-first-out queue. We call its
elements tasks, because each one carries an objective and an object, the file to be processed. The
module containing the FIFOs is called Core. The resulting structure of the involved modules is
shown in Fig. 11.1.

Fig. 11.1. includes yet another server, LineServer, and shows the ease with which additional
servers may be inserted in this scheme. They act as further sources and/or sinks for tasks, feeding
or consuming the queues contained in Core. LineServer indeed produces and consumes tasks like
NetServer. Instead of the RS-485 bus, it handles the RS-232 line which, connected to a modem,
allows access to the server over telephone lines. We refrain from describing this module in further
detail, because in many ways it is a mirror of NetServer.

A centralized, open server calls for certain protection measures against unauthorized use. We
recall that requests always carry a user identification and a password as parameters. The server

 6

checks their validity by examining a table of users. The respective routines and the table are
contained in module Core (see Sect. 11.5).

Figure 11.1 Module structure of server systems

11.2. Electronic Mail Service
The heart of an e-mail service is the set of mailboxes stored on the dedicated, central server. Each
registered user owns a mailbox. The evidently necessary operations are the insertion of a message
and its retrieval. In contrast to customary letter boxes, however, a retrieved message need not
necessarily be removed from the box; its retrieval produces a copy. The box thereby automatically
becomes a repository, and messages can be retrieved many times. This scheme calls for an
additional command which removes a message from the box. Also, a command is needed for
delivering a table of contents, in which presumably each message is represented by an indication of
its sender and time of arrival.

The mail scheme suggested above results in the following commands:

Net.Mailbox ServerName. This command fetches a table of contents of the current user's mailbox
from the specified server and displays it in a new viewer. The user's name and password must
have been registered previously by the command System.SetUser.

Net.SendMail ServerName. The text in the marked viewer is sent to the specified server. In order to
be accepted, the text must begin with at least one line beginning with "To:" and containing at least
one recipient.

Net.ReceiveMail. This command is contained in the title bar (menu) of the viewer obtained when
requesting the table of contents. Prior to issuing the command, the message to be read must have
been specified by selecting a line in the table of contents in this viewer.

Net.DeleteMail. This command is also contained in the mailbox viewer's title bar. The message to
be deleted must be selected before issuing the command.

The mail system presented here is primarily intended to serve as an exchange for short messages
which are typically sent, received, read, and discarded. Mailboxes are not intended to serve as long
term archives for a large and ever growing number of long pieces of text. This restrictiveness of
purpose allows to choose a reasonably simple implementation and results in an efficient, practically
instantaneous access to messages when the server is idle.

The Oberon mail server used at ETH also provides communication with external correspondents. It
connects to an external mail server which is treated as a source and a sink for messages (almost)
like other customers. Additionally, messages sent to that server need to be encoded into a
standardized format, and those received need to be decoded accordingly. The parts of module
MailServer for encoding and decoding are not described in this book. We merely divulge the fact
that its design and implementation took a multiple of the time spent on the fast, local message
exchange, to which we confine this presentation.

From the structures explained in Section 11.1. it follows that three agents are involved in the
transfer of messages from the user into a mailbox. Therefore, additions to the server system
distribute over three modules. New commands are added to module Net (see Section 10.4.); these
procedures will be listed below. Their counterparts reside in module NetServer on the dedicated

NetServer LineServer PrintServer MailServer

SCC RS232 PrintMaps Core

Oberon
Texts
Files

 7

computer. The third agent is module MailServer; both are listed below in this Section. The latter
handles the insertion of arriving messages into mailboxes. The path which a message traverses for
insertion and retrieval is shown in Fig. 11.2. Rectangles with bold edges mark storage.

Figure 11.2 Path of messages to and from mailbox

Communication between the master station and the dedicated server runs over the network and
therefore calls for an extension of its protocol (see Sect. 10.2.). The additions directly correspond to
the four commands given above.

MailBox = MDIR username password (datastream | NAK | NPR).
SendMail = RML username password (ACK datastream | NAK | NPR).
ReceiveMail = SML username password msgno (datastream | NAK | NPR).
DeleteMail = DML username password msgno (ACK | NAK | NPR).

The message number is taken from the selected line in the mailbox viewer. The data transmitted
are taken as (unformatted) texts. This is in contrast to file transfers, where they are taken as any
sequence of bytes. The four command procedures listed below belong in module Net; they are
listed together with the auxiliary procedures SendText and ReceiveText which closely correspond
to SendData and ReceiveData (see Sect. 10.4).

We now turn our attention to the command procedures' counterparts in module NetServer listed in
this Section. In order to explain these routines, a description of their interface with the mail server
and a definition of the structure of mailboxes must precede. We begin with the simplest case, the
counterpart of SendMail. It is the part of procedure NetServer.Serve which is guarded by the
condition typ = RML, indicating a request to receive mail. As in all other services, the parameters
username and password are read and the admissibility of the request is checked. The check is
performed by procedure Core.UserNo which yields a negative number if service is to be refused. In
the affirmative case, procedure ReceiveData obtains the message and stores it on a file, which is
thereafter inserted into the mail queue as a task to be handled by the mail server at a later time.
This may involve distribution of the message into several mailboxes.

Module Core is listed in Sect. 11.5. As mentioned before, it serves as link between the various
server modules, defining the data types of the linking queues and also of mailboxes. Task queues
are represented as FIFO-lists. The descriptor of type Queue contains a pointer to the first list
element used for retrieval, and a pointer to the last element used for insertion (see Fig. 11.3).
These pointers are not exported; instead, the next task is obtained by calling procedure
Core.GetTask, and it is deleted by Core.RemoveTask. There exist two exported variables of type
Queue: MailQueue consumed by MailServer, and PrintQueue consumed by PrintServer (see Sect.
11.3.). (In fact, we use a third queue: LineQueue consumed by LineServer). Elements of queues
are of type TaskDesc which specifies the file representing the data to be consumed. Additionally, it
specifies the user number and identification of the task's originator. Three procedures are provided
by module Core for handling task queues:

PROCEDURE InsertTask(VAR q: Queue; F: Files.File; VAR id: ARRAY OF CHAR; uno: INTEGER);

PROCEDURE GetTask(VAR q: Queue; VAR F: Files.File; VAR id: ARRAY OF CHAR; VAR uno:
INTEGER);

PROCEDURE RemoveTask(VAR q: Queue);

The server's counterparts of the remaining mail commands access mailboxes directly. The
simplicity of the required actions - a result of a carefully chosen mailbox representation - and
considerations of efficiency do not warrant a detour via task queue and mail server.

Net NetServer

mail queue

mail box

MailServer
wire

 8

Figure 11.3 Structure of task queue

Every mailbox is represented as a file. This solution has the tremendous advantage that no special
administration has to be introduced to handle a reserved partition of disk store for mail purposes. A
mailbox file is partitioned into three parts: the block reservation part, the directory part, and the
message part. Each part is quickly locatable, because the first two have a fixed length (32 and
31*32 = 992 bytes). The message part is regarded as a sequence of blocks (of 256 bytes), and
each message occupies an integral number of adjacent blocks. Corresponding to each block, the
block reservation part contains a single bit indicating whether or not the block is occupied by a
message. Since the block reservation part is 32 bytes long, the message part contains at most 256
blocks, i.e. 64K bytes. The block length was chosen after an analysis of messages which revealed
that the average message is less than 500 bytes long.

The directory part consists of an array of 31 elements of type MailEntry, a record with the following
fields: pos and len indicate the index of the message's first block and the message's number of
bytes; time and date indicate the message's time of insertion, and originator indicates the
message's source. The entries are linked (field next) in chronological order of their arrival, and entry
0 serves as the list's header. It follows that a mailbox contains at most 30 messages. An example of
a mailbox state is shown in Fig. 11.4.

MailEntry = RECORD
 pos, next: INTEGER;
 len: LONGINT;
 time, date: INTEGER;
 originator: ARRAY 20 OF CHAR
 END ;
MResTab = ARRAY 8 OF SET;
MailDir = ARRAY 31 OF MailEntry;

We are now in a position to inspect the handler for requests for message retrieval. It is guarded
by the condition typ = SML. After a validity check, the respective requestor's mailbox file is
opened. The last mailbox opened is retained by the global variable MF which acts as a single
entry cache. The associated user number is given by the global variable mailuno. Since typically
several requests involving the same mailbox follow, this measure avoids the repeated reopening
of the same file. Thereafter, a rider is directly positioned at the respective directory entry for
reading the message's length and position in the message part. The rider is repositioned
accordingly, and transmission of the message is handled by procedure SendMail.

8

jg

15

hm

3

nw

NIL

3

last

first

n

uno

id

next

file

Queue

 9

Figure 11.4 State of mailbox file

Requests for the mailbox directory are handled by the routine guarded by the condition typ = MDIR.
The directory part must be read and converted into a text. This task is supported by various
auxiliary procedures (Append) which concatenate supplied data in a buffer for latter transmission.
We emphasize that this request does not require the reading of any other part of the file, and
therefore is very swift.

The last of the four mail service requests (DML) deletes a specified message. Removal from the
directory requires a relinking of the entries. Unused entries are marked by their len field having
value 0. Also, the blocks occupied by the message become free. The block reservation part must
be updated accordingly.

In passing we note that the use of files for representing mailboxes, in combination with the file
distribution services residing on the same server station, allows anyone to access (and inspect) any
mailbox. Although we do not claim that this system provides secure protection against snooping, a
minimal effort for protection was undertaken by a simple encoding of messages in mailbox files.
This encoding is not shown in the program listings contained in this book.

One operation remains to be explained in more detail: the processing of tasks inserted into the mail
queue. It consists of the insertion of the message represented by the task's file into one or several
mailboxes. It involves the interpretation of the message's header, i.e. lines containing addresses,
and the construction of a new header containing the name of the originator and the date of insertion
into the mailbox. These actions are performed by procedures in module MailServer. Its procedure
Serve is installed as an Oberon Task, and it is guarded by the condition Core.MailQueue.n > 0,
indicating that at least one message needs to be dispatched.

The originator's name is obtained from Core.GetUserName(uno), where uno is the user number
obtained from the queue entry. The actual time is obtained from Oberon.GetClock. The form of the
new header is shown by the following example:

From: Gutknecht
At: 12.08.91 09:34:15

The received message's header is then searched for recipients. Their names are listed in header
lines starting with "To" (or "cc"). After a name has been read, the corresponding user number is
obtained by calling Core.UserNum. Then the message is inserted into the designated mailbox by
procedure Dispatch. The search for recipients continues, until a line is encountered that does not
begin with "To" (or "cc"). A negative user number indicates that the given name is not registered. In

Block reservation part

1100000101111110111111

Directory part

Message part

pos
len
time
date
orig
next

0

12

0

8
92

10:7:12
15.2.91
Muller

20

 15
197

11:27:2
17.1.90
Templ

2

 2
1150

23:41:8
6.6.91
Franz

0

15 0 2 8

0 1 2 12 20

 10

this case, the message is returned to the sender, i.e. inserted into the mailbox of the sender. An
exception is the recipient "all" which indicates a broadcast to all registered users.

Procedure Dispatch first opens the mailbox file of the user specified by the recipient number rno. If
a mailbox exists, its block reservation part (mrtab) and its directory part (mdir) are read. Otherwise
a new, empty box is created. Then follows the search for a free slot in the directory and, if found,
the search for a sufficient number of free, adjacent blocks in the message part. The number of
required blocks is given by the message length. If either no free slot exists, or there is no large
enough free space for the message part, the message is returned to the sender (identified by sno).
If also this attempt fails, the message is redirected to the postmaster (with user number 0). The
postmaster is expected to inspect his mailbox sufficiently often so that no overflow occurs. If the
postmaster's mailbox also overflows, the message is lost.

Only if all conditions for a successful completion are satisfied, is insertion begun. It starts with the
marking of blocks in the reservation table and with the insertion of the new directory information.
Table and directory are then updated on the file. Thereafter, the message with the constructed new
header is written into the message part.

Perhaps it may seem to the reader that the addition of a separate module MailServer, together with
a new Oberon Task and the machinery of the mail queue is not warranted by the relative simplicity
of the insertion operation, and that it could have been incorporated into module NetServer just as
well as message extraction. The picture changes, however, if handling of external mail is to be
added, and if access to mailboxes via other channels, such as the RS-232 line, is to be provided.
The presented solution is based on a modular structure that facilitates such extensions without
change of existing parts. External mail routines inevitably have to cope with message formats
imposed by standards. Format transformations, encoding before sending to an external server and
decoding before dispatching become necessary. Indeed, these operations have inflated module
MailServer in a surprising degree. And lastly, the queuing machinery supports the easy insertion of
additional message sources and provides a welcome decoupling and relaxation of timing
constraints, particularly in the case of low-speed transmission media such as telephone lines.

11.4. Miscellaneous services
There exist a few additional services that are quite desirable under the presence of a central facility,
and at the same time easy to include. They are briefly described in this section.

The set of commands of the file distribution service is augmented by Net.DeleteFiles and
Net.Directory, allowing the remote deletion of files and inspection of the server's directory. The
command procedures are listed below and must be regarded as part of module Net (Sect. 10.4).
They communicate with their counterparts in module NetServer (Sect. 11.2.) according to the
following protocol:

DeleteFile = DEL username password filename (ACK | NAK | NPR).
Directory = FDIR username password prefix (datastream | NAK | NPR).

The directory request carries a prefix; it uses procedure FileDir.Enumerate to obtain all file names
starting with the specified prefix. Thereby the search can be limited to the relevant section of the
directory.

Since requests to the server are always guarded by a password, a facility is necessary to set and
change the password stored by the server. The respective command is Net.SetPassword, and its
handler in the server is guarded by the condition typ = NPW. The corresponding protocol is

NewPassword = NPW username oldpassword
(ACK DAT newpassword (ACK | NAK) | NAK | NPR).

Finally, procedure Net.GetTime allows the workstation's real time clock to be adjusted to that of the
central server. The protocol is

GetTime = TRQ TIM time date.

 11

In concluding we summarize the entire protocol specification below. The combined server facility,
comprising file distribution, electronic mail, printing, and time services is operating on a Ceres-1
computer (1 Mips) with a 2 MByte store, of which half is used by the printer's bitmap.

Summary of Protocol:
protocol = {request}.
request = ReceiveFile | SendFile | DeleteFile | Directory |
 MailBox | SendMail | ReceiveMail | DeleteMail |
 PrintStream | SendMsg | NameRequest | NewPassword | GetTime.
ReceiveFile = SND username password filename (datastream | NAK | NPR).
datastream = DAT0 data ACK1 {DATi data ACKi+1}.
SendFile = REC username password filename (ACK0 datastream | NAK | NPR).
datastream = DAT0 data ACK1 {DATi data ACKi+1}.
DeleteFile = DEL username password filename (ACK | NAK | NPR).
Directory = FDIR username password prefix (datastream | NAK | NPR).
MailBox = MDIR username password (datastream | NAK | NPR).
SendMail = RML username password (ACK datastream | NAK | NPR).
ReceiveMail = SML username password msgno (datastream | NAK | NPR).
DeleteMail = DML username password msgno (ACK | NAK | NPR).
PrintStream = PRT username password (ACK datastream | NAK | NPR).
SendMsg = MSG message ACK.
NameRequest = NRQ partnername [NRS].
NewPassword = NPW username oldpassword
 (ACK DAT newpassword (ACK | NAK) | NAK | NPR).
GetTime = TRQ TIM time date.

11.5. User Administration
It appears to be a universal law that centralization inevitably calls for an administration. The
centralized mail and printing services make no exception. The typical duties of an administration
are accounting and protection against misuse. It has to ensure that rendered services are counted
and that no unauthorized user is taking advantage of the server. An additional duty is often the
gathering of statistical data. In our case, accounting plays a very minor role, and the reason for the
existence of the administration presented here is primarily protection.

We distinguish between two kinds of protection. The first is protection of the server's resources in
general, the second is that of individual users' resources from being accessed by others. Whereas
in the first case some validation of a user's identification might suffice, the second case requires the
association of personal resources with user names. In any case, the central server must store data
for each member of the set of registered users. Specifically, it must be able to check the
admissibility of a user's request on the basis of stored information.

Evidently, a protection administration is similar in purpose and function to a lock. Quite regularly,
locks are subjected to attempts of breaking them, and locksmiths are subjected to attempts of being
outwitted. The race between techniques of breaking locks and that of better countermeasures is
well known, and we do not even try to make a contribution to it. Our design is based on the premise
that the Oberon Server operates in a harmonious environment. Nevertheless, a minimal amount of
protection machinery was included. It raises the amount of effort required for breaking protection to
a level which is not reached when curiosity alone is the motivation.

The data about users is held in a table in module Core. As was mentioned earlier, Core acts as
connector between the various servers by means of task queues. Its second purpose is to provide
the necessary access to user data via appropriate procedures.

In the simplest solution, each table entry would contain a user name only. For each request, the
administration would merely test for the presence of the request's user name in the table. A
significant step towards safe protection is the introduction of a password in addition to the user
name. In order that a request be honoured, not only must the name be registered, but the delivered
and the stored password must match. Evidently, abusive attempts would aim at recovering the

 12

stored passwords. Our solution lies in storing an encoded password. The command
System.SetUser, which asks for a user identification and a password, immediately encodes the
password, and the original is stored nowhere. The encoding algorithm is such that it is difficult to
construct a corresponding decoder.

The mail service requires a third attribute in addition to identification and encoded password: the
user's name as it is used for addressing messages. Identification typically consists of the user's
initials; for the name we suggest the full last name of the user and discourage cryptic abbreviations.

The printing service makes an accounting facility desirable. A fourth field in each user table entry
serves as a count for the number of printed pages. As a result, there are four fields: id, name,
password, and count. The table is not exported, but only accessible via procedures. Core is a good
example of a resource hiding module. The program is listed below, and a few additional comments
follow here.

Procedures UserNo(id) and UserNum(name) yield the table index of the identified user; it is called
user number and is used as a short encoding for recipients and senders within the mail server. In
other servers, the number is merely used to check a request's validity.

The user information must certainly survive any intermission of server operation, be it due to
software, hardware, or power failure. This requires that a copy of the user information is held on
backup store (disk). The simplest solution would be to use a file for this purpose. But this would
indeed make protection too vulnerable: files can be accessed easily, and we have refrained from
introducing a file protection facility. Instead, the backup of the user information is held on a few
permanently reserved sectors on the server machine, which are inaccessible to the file system.

Apart from procedures and variables constituting the queuing mechanism for tasks, the procedures
exported from module Core all belong to the administration, and they can be divided into two
categories. The first category contains the procedures used by the three servers presented in this
Chapter, and they are UserNo, UserNum, IncPageCount, SetPassword, GetUserName and
GetFileName. The second category consists of the procedures NofUsers and GetUser for
inspecting table entries, and InsertUser, DeleteUser, ClearPassword, ClearCounts, and Init for
making changes to the table.

The client of the latter category is a module Users which is needed by the human administrator of
the server facility.

The reader may at this point wonder why a more advanced concept of administration has not been
chosen, which would allow the human administrator to operate the server remotely. A quick
analysis of the consequences of this widely used approach reveals that a substantial amount of
additions to our system would be required. The issue of security and protection would become
inflated into dimensions that are hardly justified for our local system. The first consequence would
be a differentiation among levels of protection. The administrator would become a so-called super-
user with extra privileges, such as changing the user table. And so the game of trying to break the
protection measures starts to become an interesting challenge.

We have resisted the temptation to introduce additional complexity. Instead, we assume that
physical access to the server station is reserved to the administrator. Naturally, module Users and
in particular the symbol file of Core do not belong to the public domain. In concluding, we may point
out that the impossibility of activating users' programs on the server station significantly reduces the
possibilities for inflicting damage from the exterior.

 13

12 The compiler

12.1. Introduction
The compiler is the primary tool of the system builder. It therefore plays a prominent role in the
Oberon System, although it is not part of the basic system. Instead, it constitutes a tool module - an
application - with a single command: Compile. It translates program texts into machine code.
Therefore, it is as a program inherently machine-dependent; it acts as the interface between source
language and target computer.

In order to understand the process of compilation, the reader needs to be familiar with the source
language Oberon defined in Appendix 1, and with the target computer RISC, defined in Appendix 2.

The language is defined as an infinite set of sequences of symbols taken from the language's
vocabulary. It is described by a set of equations called syntax. Each equation defines a syntactic
construct, or more precisely, the set of sequences of symbols belonging to that construct. It
specifies how that construct is composed of other syntactic constructs. The meaning of programs is
defined in terms of semantic rules governing each such construct.

Compilation of a program text proceeds by analyzing the text and thereby decomposing it
recursively into its constructs according to the syntax. When a construct is identified, code is
generated according to the semantic rule associated with the construct. The components of the
identified construct supply parameters for the generated code.

It follows that we distinguish between two kinds of actions: analyzing steps and code generating
steps. In a rough approximation we may say that the former are source language dependent and
target computer independent, whereas the latter are source language independent and target
computer dependent. Although reality is somewhat more complex, the module structure of this
compiler clearly reflects this division. The main module of the compiler is ORP (for Oberon to RISC
Parser) It is primarily dedicated to syntactic analysis, parsing. Upon recognition of a syntactic
construct, an appropriate procedure is called the code generator module ORG (for Oberon to RISC
Generator). Apart from parsing, ORP checks for type consistency of operands, and it computes the
attributes of objects identified in declarations.

Whereas ORP mirrors the source language and is independent of a target computer, ORG reflects
the target computer, but is independent of the source language.

Oberon program texts are regarded as sequences of symbols rather than sequences of characters.
Symbols themselves, however, are sequences of characters. We refrain from explaining the
reasons for this distinction, but mention that apart from special characters and pairs such as +, &,
<=, also identifiers, numbers, and strings are classified as symbols. Furthermore, certain capital
letter sequences are symbols, such as IF, END, etc. Each time the syntax analyzer (parser)
proceeds to read the next symbol, it does this by calling procedure Get, which constitutes the so-
called scanner residing in module ORS (for Oberon to RISC Scanner). It reads from the source text
as many characters as are needed to recognize the next symbol.

In passing we note that the scanner alone reflects the definition of symbols in terms of characters,
whereas the parser is based on the notion of symbols only. The scanner implements the
abstraction of symbols. The recognition of symbols within a character sequence is called lexical
analysis.

Ideally the recognition of any syntactic construct, say A, consisting of subconstructs, say B1, B2, ...
, Bn, leads to the generation of code that depends only on (1) the semantic rules associated with A,
and (2) on (attributes of) B1, B2, ... , Bn. If this condition is satisfied, the construct is said to be
context-free, and if all constructs of a language are context-free, then also the language is context-
free. Syntax and semantics of Oberon adhere to this rule, although with a significant exception. This

 14

exception is embodied by the notion of declarations. The declaration of an identifier, say x, attaches
permanent properties to x, such as the fact that x denotes a variable and that its type is T. These
properties are "invisible" when parsing a statement containing x, because the declaration of x is not
also part of the statement. The "meaning" of identifiers is thus inherently context-dependent.

Context-dependence due to declarations is the immediate reason for the use of a global data
structure which represents the declared identifiers and their properties (attributes). Since this
concept stems from early assemblers where identifiers (then called symbols) were registered in a
linear table, the term symbol table tends to persist for this structure, although in this compiler it is
considerably more complex than an array. Basically, it grows during the processing of declarations,
and it is searched while expressions and statements are processed. Procedures for building and for
searching are contained in module ORB.

A complication arises from the notion of exports and imports in Oberon. Its consequence is that the
declaration of an identifier x may be in a module, say M, different from where x is referenced. If x is
exported, the compiler includes x together with its attributes in the symbol file of the compiled
module M. When compiling another module which imports M, that symbol file is read and its data
are incorporated into the symbol table. Procedures for reading and writing symbol files are
contained in module ORB, and no other module relies on information about the structure of symbol
files.

The syntax is precisely and rigorously defined by a small set of syntactic equations. As a result, the
parser is a reasonably perspicuous and short program. In spite of the high degree of regularity of
the target computer, the process of code generation is more complicated, as shown by module
ORG.

The resulting module structure of the compiler is shown in Fig. 12.1 in a slightly simplified manner.
In reality OCS is imported by all other modules due to their need for procedure OCS.Mark. This,
however, will be explained later.

Figure 12.1 Compiler's module structure

12.2. Code patterns
Before it is possible to understand how code is generated, one needs to know which code is
generated. In other words, we need to know the goal before we find the way leading to the goal. A
fairly concise description of this goal is possible due to the structure of the language. As explained
before, semantics are attached to each individual syntactic construct, independent of its context.
Therefore, it suffices to list the expected code - instead of an abstract semantic rule - for each
syntactic construct.

As a prerequisite to understanding the resulting instructions and in particular their parameters, we
need to know where declared variables are stored, i.e. which are their addresses. This compiler

Compiler / Parser ORP

Code generator ORG

Table handler ORB

Scanner ORS

Texts, Oberon Files

 15

uses the straight-forward scheme of sequential allocation of consecutively declared variables. An
address is a pair consisting of a base address (in a register) and an offset. Global variables are
allocated in the module's data section and the respective base address register is SB (Static Base,
see Chapter 6). Local variables are allocated in a procedure activation record on the stack; the
respective base register is SP (Stack Pointer). Offsets are positive integers.

The amount of storage needed for a variable (called its size) is determined by the variable's type.
The sizes of basic types are prescribed by the target computer's data representation. The following
holds for the RISC processor:

Type No. of bytes

BYTE, CHAR, BOOLEAN 1
INTEGER, REAL, SET, POINTER, PROCEDURE 4

The size of an array is the size of the element type multiplied by the number of elements. The size
of a record is the sum of the sizes of its fields.

A complication arises due to so-called alignment. By alignment is meant the adjustment of an
address to a multiple of the variable's size. Alignment is performed for variable addresses as well
as for record field offsets. The motivation for alignment is the avoidance of double memory
references for variables being "distributed" over two adjacent words. Proper alignment enhances
processing speed quite significantly. Variable allocation using alignment is shown by the example in
Fig. 12.2.

VAR b0: BYTE; int0: INTEGER; b1: BYTE; int1: INTEGER;

Figure 12.2. Alignment of variables

We note in passing that a reordering of the four variables lessens the number of unused bytes, as
shown in Fig. 12.3.

VAR int0, int1: INTEGER; b0, b1: BYTE;

Figure 12.3. Improved order of variables

Memory instructions compute the address as the sum of a register (base) and an offset constant.
Local variables use the stack pointer SP (R14) as base, global variables the static base SB (R13)
Every module has its own SB value, and therefore access to global (and imported) variables
requires two instructions, one for fetching the base value, and one for loading or storing data. If the
compiler can determine, whether the correct base value has already been loaded into the SB
register, the former instruction is omitted.

The first 7 sample patterns contain global variables only, and their base SB is assumed to hold the
appropriate value. Parameters of branch instructions denote jump distances from the instruction's
own location (PC-relative).

b1

b0

int1

int0

int b1

int1

b0

int0

int1

b1

int0

int1

b0

 16

Pattern 1: Assignment of constants. We begin with a simple example of assigning constants to
variables. The variables used in this example are global; their base register is SB. Each assignment
results in a single instruction. The constant is embedded within the instruction as a literal operand.

MODULE Pattern1;
 VAR ch: CHAR; 0
 k: INTEGER; 4
 x: REAL; 8
 s: SET; 12

BEGIN module entry code
 ch := "0"; 40000030 MOV R0 R0 30H
 B0D00000 STR R0 SB 0
 k := 10; 4000000A MOV R0 R0 10
 A0D00004 STR R0 SB 4
 x := 1.0; 60003F80 MOV' R0 R0 3F800000H
 A0D00008 STR R0 SB 8
 s := {0, 4, 8} 40000111 MOV R0 R0 111H
 A0D0000C STR R0 SB 12
END Pattern1. module exit code

Pattern 2: Simple expressions: The result of an expression containing operators is always stored in
a register before it is assigned to a variable or used in another operation.

Registers for intermediate results are allocated sequentially in ascending order R0, R1, ... , R11.
Integer multiplication and division by powers of 2 are represented by shifts (LSL, ASR). Similarly,
the modulus by a power of 2 is obtained by masking off leading bits. The operations of set union,
difference, and intersection are represented by logical operations (OR, AND).

MODULE Pattern2;
 VAR i, j, k, n: INTEGER; 0, 4, 8, 12
 x, y: REAL; 16, 20
 s, t, u: SET; 24, 28, 32

BEGIN i := (i + 1) * (i - 1); LDR R0 SB 0
 ADD R0 R0 1
 LDR R1 SB 0
 SUB R1 R1 1
 MUL R0 R0 R1
 STR R0 SB 0
 k := k DIV 17; LDR R0 SB 8
 DIV R0 R0 17
 STR R0 SB 8
 k := 8*n; LDR R0 SB 12
 LSL R0 R0 3
 STR R0 SB 8
 k := n DIV 2; LDR R0 SB 12
 ASR R0 R0 1
 STR R0 SB 8
 k := n MOD 16; LDR R0 SB 12
 AND R0 R0 15
 STR r0 SB 8
 x := -y / (x - 1.0); LDR R0 SB 16
 MOV' R1 R0 3F80H
 FSB R0 R0 R1
 LDR R1 SB 20
 FDV R0 R1 R0
 MOV R1 R0 0
 FSB R0 R1 R0
 STR R0 SB 16
 s := s + t * u LDR R0 SB 28
 LDR R1 SB 32

 17

 AND R0 R0 R1
 LDR R1 SB 24
 OR R0 R1 R0
 STR R0 SB 24
END Pattern2.

Pattern3: Indexed variables: References to elements of arrays make use of the possibility to add
an index value to an offset. The index must be present in a register and be multiplied by the size of
the array elements. (For integers with size 4 this is done by a shift of 2 bits). Then this index is
checked whether it lies within the bounds specified in the array's declaration. This is achieved by a
comparison, actually a subtraction, and a subsequent branch instruction causing a trap, if the index
is either negative or beyond the upper bound.

If the reference is to an element of a multi-dimensional array (matrix), its address computation
involves several multiplications and additions. The address of an element A[ik-1, ... , i1, i0] of a k-
dimensional array A with lengths nk-1, ... , n1, n0 is

adr(A) + ((... ((ik-1 * nk-2) + ik-2) * nk-3 + ...) * n1 + i1) * n0 + i0

Note that for index checks CMP is written instead of SUB to mark that the subtraction is merely a
comparison, that the result remains unused and only the condition flag registers hold the result.

MODULE Pattern3;
 VAR i, j, k, n: INTEGER; 0, 4, 8, 12
 a: ARRAY 10 OF INTEGER; 16
 x: ARRAY 10, 10 OF INTEGER; 56
 y: ARRAY 10, 10, 10 OF INTEGER; 456
BEGIN
 k := a[i]; LDR R0 SB 0
 CMP R1 R0 10
 BLHI R12
 LSL R0 R0 2
 ADD R0 SB R0
 LDR R0 R0 16
 STR R0 SB 8
 n := a[5]; LDR R0 SB 36
 STR R0 SB 12
 x[i, j] := 2; LDR R0 SB 0
 CMP R1 R0 10
 BLHI R12
 MUL R0 R0 40
 ADD R0 SB R0
 LDR R1 SB 4
 CMP R2 R1 10
 BLHI R12
 LSL R1 R1 2
 ADD R0 R0 R1
 MOV R1 R0 2
 STR R1 R0 56
 y[i, j, k] := 3; LDR R0 SB 0
 CMP R1 R0 10
 BLHI R12
 MUL R0 R0 400
 ADD R0 SB R0
 LDR R1 SB 4
 CMP R2 R1 10
 BLHI R12
 MUL R1 R1 40
 ADD R0 R0 R1
 LDR R1 SB 8
 CMP R2 R1 10

 18

 BLHI R12
 LSL R1 R1 2
 ADD R0 R0 R1
 MOV R1 R0 3
 STR R1 R0 456
 y[3, 4, 5] := 6 MOV R0 R0 6
 STR R0 SB 1836
END Pattern3.

Pattern 4: Record fields and pointers: Fields of records are accessed by computing the sum of the
record's (base) address and the field's offset. If the record variable is statically declared, the sum is
computed by the compiler.

MODULE Pattern4;
 TYPE Ptr = POINTER TO Node;
 Node = RECORD num: INTEGER; 0
 name: ARRAY 8 OF CHAR; 4
 next: Ptr 12
 END ;
 VAR p, q: Ptr; 12, 16
 r: Node; 20

BEGIN
 r.num := 10; MOV R0 R0 10
 STR R0 SB 20
 p.num := 6 LDR R0 SB 12 (p)
 MOV R1 R0 6
 STR R1 R0 0
 p.name[7] := "0"; LDR R0 SB 12
 MOV R1 R0 30H
 STR R1 R0 11 (4+7)
 p.next := q; LDR R0 SB 12
 LDR R1 SB 16
 STR R1 R0 12
 p.next.next := NIL LDR R0 SB 12 (p)
 LDR R0 R0 12 (p.next)
 MOV R1 R0 0 (NIL)
 STR R1 R0 12 (p.next.next)
END Pattern4.

Pattern 5: Boolean expressions, If statements: Conditional statements imply that parts of them are
skipped. This is done by the use of branch instructions whose operand specifies the distance of the
branch. The instructions refer to the condition-register as an implicit operand. Its value is
determined by a preceding instruction, typically a compare or a bit-test instruction.

The Boolean operators & and OR are purposely not defined as total functions, but rather by the
equations

p & q = if p then q else FALSE
p OR q = if p then TRUE else q

Consequently, Boolean operators must be translated into branches too. Evidently, branches
stemming from if statements and branches stemming from Boolean operators should be merged, if
possible. The resulting code therefore does not necessarily mirror the structure of the if statement
directly, as can be seen from the code in Pattern5. We must conclude that code generation for
Boolean expressions differs in some aspects from that for arithmetic expressions.

The example of Pattern5 is also used to exhibit the code resulting from the standard procedures
INC, DEC, INCL, and EXCL. These procedures provide an opportunity to use shorter code in those
cases where a single two-operand instruction suffices, i.e. when one of the arguments is identical
with the destination.

 19

MODULE Pattern5;
 VAR n: INTEGER; s: SET; 0, 4
BEGIN
 IF n = 0 THEN LDR R0 SB 0
 CMP R0 R0 0
 BNE 3
 INC(n) LDR R0 SB 0
 ADD R0 R0 1
 STR R0 SB 0
 END ;
 IF (n >= 0) & (n < 100) THEN LDR SB R0 ...
 LDR R0 SB 0 (n)
 CMP R0 R0 0
 BLT 6
 LDR R0 SB 0
 CMP R0 R0 100
 BGE 3
 DEC(n) LDR R0 SB 0
 SUB R0 R0 1
 STR R0 R0 0
 END ;
 IF ODD(n) OR (n IN s) THEN LDR SB R0 ...
 LDR R0 SB 0 (n)
 AND R0 R0 1
 BNE 5
 LDR R0 SB 4 (s)
 LDR R1 SB 0
 ADD R1 R1 1
 ROR R0 R0 R1
 BPL 2
 n := -1000 MOV R0 R0 -1000
 STR R0 SB 0
 END ;
 IF n < 0 THEN LDR SB R0 ...
 LDR R0 SB 0
 CMP R0 R0 0
 BGE 3
 s := {} MOV R0 R0 0 {}
 STR R0 SB 4
 B 17
 ELSIF n < 10 THEN LDR SB R0 ...
 LDR R0 SB 0
 CMP R0 R0 10
 BGE 3
 s := {0} MOV R0 R0 1
 STR R0 SB 4
 B 10
 ELSIF n < 100 THEN LDR SB R0 ...
 LDR R0 SB 0
 CMP R0 R0 100
 BGE 3
 s := {1} MOV R0 R0 2
 STR R0 SB 4
 B 3
 ELSE
 s := {2} MOV R0 R0 4
 LDR SB R0 ...
 STR R0 SB 4
 END
END Pattern5.

Pattern 6: While and repeat statements.

 20

MODULE Pattern6;
 VAR i: INTEGER;
BEGIN i := 0; MOV R0 R0 0
 STR R0 SB 0
 WHILE i < 10 DO LDR SB R0 ...
 LDR R0 SB 0
 CMP R0 R0 10
 BGE 4
 i := i + 2 LDR R0 SB 0
 ADD R0 R0 2
 STR R0 SB 0
 END ; B -8
 REPEAT i := i - 1 LDR SB R0 ...
 LDR R0 SB 0
 SUB R0 R0 1
 STR R0 SB 0
 UNTIL i = 0 LDR R0 SB 0
 CMP R0 R0 0
 BNE -7
END Pattern6.

Pattern 7: For statements.
MODULE Pattern7;
 VAR i, m, n: INTEGER;
BEGIN
 FOR i := 0 TO n-1 DO MOV R0 R0 0
 LDR R1 SB 8
 SUB R1 R1 1
 CMP LNK R0 R1
 BGT 7
 STR R0 SB 0
 m := 2*m LDR R0 SB 4
 LSL R0 R0 1
 STR R0 SB 4
 END LDR R0 SB 0
 ADD R0 R0 1
 B -11
END Pattern7.

Pattern 8: Proper procedures: Procedure bodies are surrounded by a prolog (entry code) and an
epilog (exit code). They reposition the stack pointer SP (see Chapter 6), which holds the address of
the procedure activation record on the stack. The immediate value of the first instruction indicates
the space taken by variables local to the procedure, rounded up to the next multiple of 4.

Procedure calls use a branch and link (BL) instruction. Parameters are loaded into registers prior to
the call and pushed on the stack after the call. Every parameter occupies a multiple of 4 bytes. In
the case of value parameters the value is loaded, and in the case of VAR-parameters, the
variable's address is loaded.

MODULE Pattern8;
 VAR i: INTEGER;

 PROCEDURE P(x: INTEGER; VAR y: INTEGER);
 VAR z: INTEGER;
 BEGIN SUB SP SP 16 adjust SP
 STR LNK SP 0 push ret adr
 STR R0 SP 4 push x
 STR R1 SP 8 push @y
 z := x; LDR R0 SP 4 x
 STR R0 SP 12 z
 y := z LDR R0 SP 12 z

 21

 LDR R1 SP 8 @y
 STR R0 R1 0 y
 END P; LDR LNK SP 0 pop ret adr
 ADD SP SP 16
 B R15

BEGIN P(5, i) MOV R0 R0 5
 ADD R1 SB 0 @i
 BL -14 call
END Pattern8.

Pattern 9: Function procedures. They are handled in exactly the same manner as proper
procedures, except that a result is returned in register R0. If the function is called in an expression
at a place where intermediate results are held in registers, these values are put onto the stack
before the call, and they are restored after return (not shown here).

MODULE Pattern9;
 VAR x: REAL;

 PROCEDURE F(x: REAL): REAL;
 BEGIN SUB SP SP 8
 STR LNK SP 0 push ret adr
 STR R0 SP 4 push x
 IF x >= 1.0 THEN LDR R0 SP 4
 MOV' R1 R0 3F80H
 FSB R0 R0 R1
 BLT 4
 x := F(F(x)) LDR R0 SP 4
 BL -9
 BL -10
 STR R0 SP 4
 END ;
 RETURN x LDR R0 SP 4
 END F; LDR LNK SP 0 pop ret adr
 ADD SP SP 8
 B R15
END Pattern9.

Pattern 10: Dynamic array parameters are passed by loading a descriptor on the stack, regardless
of whether they are value- or VAR- parameters. The descriptor consists of the actual variable's
address and the array's length. (Only one-dimensional dynamic arrays are handled).

Elements of dynamic arrays are accessed like those of static arrays. However, even when the index
is a constant, the check cannot be performed by the compiler.

MODULE Pattern10;
 VAR a: ARRAY 12 OF INTEGER;

 PROCEDURE P(x: ARRAY OF INTEGER);
 VAR i, n: INTEGER;
 BEGIN SUB SP SP 20
 STR LNK SP 0
 STR R0 SP 4 x
 STR R1 SP 8 x.len
 n := x[i]; LDR R0 SP 12 i
 LDR R1 SP 8 x.len
 CMP R2 R0 R1
 BLHI R12
 LSL R0 R0 2
 LDR R1 SP 4 x

 22

 ADD R0 R1 R0
 LDR R0 R0 0
 STR R0 SP 16
 x[i+1] := n+5 LDR R0 SP 12 i
 ADD R0 R0 1
 LDR R1 SP 8 x.len
 CMP R2 R0 R1
 BLHI R12
 LSL R0 R0 2
 LDR R1 SP 4 x
 ADD R0 R1 R0
 LDR R1 SP 16 n
 ADD R1 R1 5
 STR R1 R0 0
 END P; LDR LNK SP 0
 ADD SP SP 20
 B R15

BEGIN P(a); ADD R0 SB 0 a
 MOV R1 R0 12 a.len
 BL -29
END Pattern10.

Pattern 11: Sets. This code pattern exhibits the construction of sets. If the specified elements are
constants, the set value is computed by the compiler. Otherwise, sequences of move and shift
instructions are used. Since shift instructions do not check whether the shift count is within sensible
bounds, the results are unpredictable, if elements outside the range 0 .. 31 are involved.

MODULE Pattern11;
 VAR s: SET; m, n: INTEGER;
BEGIN
 s := {m}; LDR R0 SB 4 m
 MOV R1 R0 1
 LSL R0 R1 R0
 STR R0 SB 0 s
 s := {0 .. n}; LDR R0 SB 8 n
 MOV R1 R0 -2
 LSL R0 R1 R0
 XOR R0 R0 -1
 STR R0 SB 0
 s := {m .. 31}; LDR R0 SB 4 m
 MOV R1 R0 31
 MOV R2 R0 -2
 LSL R1 R2 R1
 MOV R2 R0 -1
 LSL R0 R2 R0
 XOR R0 R0 R1
 STR R0 SB 0 s
 s := {m .. n}; LDR R0 SB 4 m
 LDR R1 SB 8 n
 MOV R2 R0 -2
 LSL R1 R2 R1
 MOV R2 R0 -1
 LSL R0 R2 R0
 XOR R0 R0 R1
 STR R0 SB 0 s
 IF n IN {2, 3, 5, 7, 11, 13} THEN MOV R0 R0 28ACH
 LDR R1 SB 8
 ADD R1 R1 1
 ASR' R0 R0 R1
 BPL 2

 23

 m := 1 MOV R0 R0 1
 STR R0 SB 4 m
 END
END Pattern11.

Pattern 12: Imported variables and procedures: When a procedure is imported from another
module, its address is unavailable to the compiler. Instead, the procedure is identified by a number
obtained from the imported module's symbol file. In place of the offset, the branch instruction holds
(1) the number of the imported module, (2) the number of the imported procedure, and (3) a link in
the list of BL instructions calling an external procedure. This list is traversed by the linking loader,
that computes the actual offset (fixup, see Chapter 6).

Imported variables are also referenced by a variable's number. In general, an access required two
instructions. The first loads the static base register SB from a global table with the address of that
module's data section. The module number of the imported variable serves as index. The second
instruction loads the address of the variable, using the actual offset fixed up by the loader.

In the following example, modules Pattern12a and Pattern12b both export a procedure and a
variable. They are referenced from the importing module Pattern12c.

MODULE Pattern12a;
 VAR k*: INTEGER;

 PROCEDURE P*;
 BEGIN k := 1
 END P;

END Pattern12a.

MODULE Pattern12b;
 VAR x*: REAL;

 PROCEDURE Q*;
 BEGIN x := 1
 END Q;

END Pattern12b.

MODULE Pattern12c;
 IMPORT Pattern12a, Pattern12b;

 VAR i: INTEGER; y: REAL;
BEGIN
 i := Pattern12a.k; 8D10xxxx LDR SB 1 link Pattern12a
 80D00000 LDR R0 SB 0 Pattern12a.k
 8D00xxxx LDR SB 0 link Pattern12c
 A0D00000 STR R0 SB 0 Pattern12c.i
 y := Pattern12b.x; 8D20xxxx LDR SB 2 link Pattern12b
 80D00000 LDR R0 SB 0 Pattern12b.x
 8D00xxxx LDR SB 0 link Pattern12c
 A0D00004 STR R0 SB 4 Pattern12c.y
END Pattern12c.

Pattern 13: Record extensions with pointers: Fields of a record type R1, which is declared as an
extension of a type R0, are simply appended to the fields of R0, i.e. their offsets are greater than
those of the fields of R0. When a record is statically declared, its type is known by the compiler. If
the record is referenced via a pointer, however, this is not the case. A pointer bound to a base type
R0 may well refer to a record of an extension R1 of R0. Type tests (and type guards) allow to test
for the actual type. This requires that a type can be identified at the time of program execution.
Because the language defines name equivalence instead of structural equivalence of types, a type
may be identified by a number. We use the address of a unique type descriptor for this purpose.

 24

Therefore, type tests consist of a simple address comparison which is very fast. Type descriptors
are stored in the module's area for data. Their address is called type tag. The tag of a (dynamically
allocated) variable is stored as a prefix to its record (with offset -8).

A type descriptor contains - in addition to information stored for use by the garbage collector - a
table of tags of all its base types. If, for instance, a type R2 is an extension of R1 which is an
extension of R0, the descriptor of R2 contains the tags of R1 and R0 as shown in Fig. 12.4. The
table has a fixed number of 3 entries.

Figure 12.4 Type descriptors

A type test of the form p IS T then, consists of a comparison of the type tag of p^ at address p-8
with the tag held in the descriptor of T at the extension level of the type of p^. A type guard p(T) is
synonymous to the statement

IF ~(p IS T) THEN abort END

The following example features 3 record types with associated pointer types, and hence also 3 type
descriptors. Each descriptor is 5 words long. Their addresses, and therefore their tags, are 0, 20,
and 40 respectively.

 0 00000020 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
20 00000020 00014006 FFFFFFFF FFFFFFFF FFFFFFFF
40 00000020 00014005 00028001 FFFFFFFF FFFFFFFF

MODULE Pattern13;
 TYPE
 P0 = POINTER TO R0;
 P1 = POINTER TO R1;
 P2 = POINTER TO R2;
 R0 = RECORD x: INTEGER END ;
 R1 = RECORD (R0) y: INTEGER END ;
 R2 = RECORD (R1) z: INTEGER END ;
 VAR
 p0: P0; 60
 p1: P1; 64
 p2: P2; 68
BEGIN
 p0.x := 0; LDR R0 SB 60
 MOV R1 R0 0 p0.x
 STR R1 R0 0 no type check
 p1.y := 1; LDR R0 SB 64
 MOV R1 R0 1
 STR R1 R0 4 p1.y
 p0(P1).y := 3; LDR R0 SB 60 p0
 LDR R1 R0 -8 tag(p0)
 LDR R1 R1 4
 ADD R2 SB 20 TD P1
 CMP R3 R2 R1

size

pointer offsets

size

pointer offsets

size

pointer offsets

R0R2 R1

 25

 BLNE R12
 MOV R1 R0 3
 STR R1 R0 4 p0.z
 p0(P2).z := 5; LDR R0 SB 60 p0
 LDR R1 R0 -8 tag(p0)
 LDR R1 R1 8
 ADD R2 SB 40 TD P2
 CMP R3 R2 R1
 BLNE R12
 MOV R1 R0 5
 STR R1 R0 8 p0.z
 IF p1 IS P2 THEN LDR R0 SB 64 p1
 LDR R1 R0 -8 tag(p1)
 LDR R1 R1 8
 ADD R2 SB 40 TD P2
 CMP R3 R2 R1
 BNE 2
 p0 := p2 LDR R0 SB 68
 STR R0 SB 60
 END
END Pattern13.

Pattern 14: Record extensions as VAR parameters: Records occurring as VAR-parameters may
also require a type test at program execution time. This is because VAR-parameters effectively
constitute hidden pointers. Type tests and type guards on VAR-parameters are handled in the
same way as for variables referenced via pointers, with a slight difference, however. Statically
declared record variables may be used as actual parameters, and they are not prefixed by a type
tag. Therefore, the tag has to be supplied together with the variable's address when the procedure
is called, i.e. when the actual parameter is established. Record structured VAR-parameters
therefore consist of address and type tag. This is similar to dynamic array descriptors consisting of
address and length.

 0 00000020 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
20 00000020 00014006 FFFFFFFF FFFFFFFF FFFFFFFF
MODULE Pattern14;
 TYPE
 R0 = RECORD a, b, c: INTEGER END ;
 R1 = RECORD (R0) d, e: INTEGER END ;
 VAR
 r0: R0; 40
 r1: R1; 52

 PROCEDURE P(VAR r: R0);
 BEGIN ...

 r.a := 1; LDR R1 SP 4 r
 STR R0 R1 0 r.a
 r(R1).d := 2 LDR R0 SP 8 tag(r)
 LDR R0 R0 4
 ADD R1 SB 20 R1
 CMP R2 R1 R0
 BLNE R12
 MOV R0 R0 2
 LDR R1 SP 4 r
 STR R0 R1 12 r.d
 END P; ...

BEGIN ...
 P(r0); ADD R0 SB 40 r0
 ADD R1 SB 0 tag(R0)
 BL P

 26

 P(r1) ADD R0 SB 52 r1
 ADD R1 SB 20 tag(R1)
 BL P
END Pattern14. ...

Pattern 15: Array assignments and strings.

MODULE Pattern15;
 VAR s0, s1: ARRAY 32 OF CHAR;

 PROCEDURE P(x: ARRAY OF CHAR);
 END P;

BEGIN s0 := "ABCDEF"; ADD R0 SB 0 @s0
 ADD R1 SB 64 @"ABCDEF"
 LDR R2 R1 0
 ADD R1 R1 4
 STR R2 R0 0
 ADD R0 R0 4
 ASR R2 R2 24 test for 0X
 BNE -6

 s0 := s1; ADD R0 SB 0 @s0
 ADD R1 SB 32 @s1
 MOV R2 R0 8 len
 LDR R3 R1 0
 ADD R1 R1 4
 STR R3 R0 0
 ADD R0 R0 4
 SUB R2 R2 1
 BNE -6

 P(s1); ADD R0 SB 32 @s1
 MOV R1 R0 32 len
 BL -38 P

 P("012345"); ADD R0 SB 72 @"012345"
 MOV R1 R0 7 len (incl 0X)
 BL -42 P

 P("%") ADD R0 SB 80 @"%"
 MOV R1 R0 2 len
 BL -46 P
END Pattern15.

Pattern 16: Predeclared procedures.

MODULE Pattern16;
 VAR m, n: INTEGER;
 x: REAL; u: SET;
 a, b: ARRAY 10 OF INTEGER;
 s, t: ARRAY 16 OF CHAR;
BEGIN
 INC(m); ADD R0 SB 0 @m
 LDR R1 R0 0
 ADD R1 R1 1
 STR R1 R0 0
 DEC(n, 10); ADD R0 SB 4 @n
 LDR R1 R0 0
 SUB R1 R1 10
 STR R1 R0 0
 INCL(u, 3); ADD R0 SB 12 @u
 LDR R1 R0 0
 OR R1 R1 8 {3}
 STR R1 R0 0

 27

 EXCL(u, 7); ADD R0 SB 12 @u
 LDR R1 R0 0
 AND R1 R1 -129 -{7}
 STR R1 R0 0
 ASSERT(m < n); LDR R0 SB 0
 LDR R1 SB 4
 CMP R0 R0 R1
 BLGE R12
 UNPK(x, n); LDR R0 SB 8 x
 ASR R1 R0 23
 SUB R1 R1 127
 STR R1 SB 4 n
 LSL R1 R1 23
 SUB R0 R0 R1
 STR R0 SB 8 x
 PACK(x, n); LDR R0 SB 8 x
 LDR R1 SB 4 n
 LSL R1 R1 23
 ADD R0 R0 R1
 STR R0 SB 8 x
 s := "0123456789"; ADD R0 SB 96 @s
 ADD R1 SB 128 adr of string
 LDB R2 R1 0 loop
 ADD R1 R1 4
 STB R2 R0 0
 ADD R0 R0 4
 ASR R2 R2 24
 BNE -6
 IF s < t THEN ADD R0 SB 96 @s
 ADD R1 SB 112 @t
 LDB R2 R0 0 loop
 ADD R0 R0 1
 LDB R3 R1 0
 ADD R1 R1 1
 CMP R4 R2 R3
 BNE 2
 CMP R4 R2 0
 BNE -8
 BGE 3

 m := 1 MOV R0 R0 1
 STR R0 SB 0 m

 END
END Pattern16.

Pattern 17: Predeclared functions.
MODULE Pattern17;
 VAR m, n: INTEGER;
 x, y: REAL;
 b: BOOLEAN; ch: CHAR;
BEGIN
 n := ABS(m); LDR R0 SB 0 m
 CMP R0 R0 0
 BGE 2
 MOV R1 R0 0
 SUB R0 R1 R0
 STR R0 SB 4 n
 y := ABS(x); LDR R0 SB 8 x
 LSL R0 R0 1

 28

 ROR R0 R0 1
 STR R0 SB 12 y
 b := ODD(n); LDR R0 SB 4 n
 AND R0 R0 1
 BEQ 2
 MOV R0 R0 1
 B 1
 MOV R0 R0 0
 STB R0 SB 16 b
 n := ORD(ch); LDB R0 SB 17 ch
 STR R0 SB 4 n
 n := FLOOR(x); LDR R0 SB 8 x
 MOV' R1 R0 4B00H
 FAD" R0 R0 R1 floor
 STR R0 SB 4 n
 y := FLT(m); LDR R0 SB 0 m
 MOV' R1 R0 4B00H
 FAD' R0 R0 R1 float
 STR R0 SB 12 y
 n := LSL(m, 3); LDR R0 SB 0 m
 LSL R0 R0 3
 STR R0 SB 4 n
 n := ASR(m, 8); LDR R0 SB 0
 ASR R0 R0 8
 STR R0 SB 4
 m := ROR(m, n); LDR R0 SB 0
 LDR R1 SB 4
 ROR R0 R0 R1
 STR R0 SB 0
END Pattern17.

12.3. Internal data structures and module interfaces

12.3.1. Data structures

In Section 12.1 it was explained that declarations inherently constitute context-dependence of the
translation process. Although parsing still proceeds on the basis of a context-free syntax and relies
on contextual information only in a few isolated instances, information provided by declarations
affects the generated code significantly. During the processing of declarations, their information is
transferred into the "symbol table", a data structure of considerable complexity, from where it is
retrieved for the generation of code.

This dynamic data structure is defined in module ORB in terms of two record types called Object
and Struct. These types pervade all other modules with the exception of the scanner. They are
therefore explained before further details of the compiler are discussed (see module ORB below).

For each declared identifier an instance of type Object is generated. The record holds the identifier
and the properties associated with the identifier given in its declaration. Since Oberon is a statically
typed language, every object has a type. It is represented in the record by its typ field, which is a
pointer to a record of type Struct. Since many objects may be of the same type, it is appropriate to
record the type's attributes only once and to refer to them via a pointer. The properties of type
Struct will be discussed below.

The kind of object which a table entry represents is indicated by the field class. Its values are
denoted by declared integer constants: Var indicates that the entry describes a variable, Con a
constant, Fld a record field, Par a VAR-parameter, and Proc a procedure. Different kinds of entries
carry different attributes. A variable or a parameter carries an address, a constant has a value, a
record field has an offset, and a procedure has an entry address, a list of parameters, and a result
type. For each class the introduction of an extended record type would seem advisable. This was
not done, however, for three reasons. First, the compiler was first formulated in (a subset of)

 29

Modula-2 which does not feature type extension. Second, not making use of type extensions would
make it simpler to translate the compiler into other languages for porting the language to other
computers. And third, all extensions were known at the time the compiler was planned. Hence
extensibility provided no argument for the introduction of a considerable variety of types. The
simplest solution lies in using the multi-purpose fields val and dsc for class-specific attributes. For
example, val holds an address for variables, parameters, and procedures, an offset for record
fields, and a value for constants.

The definition of a type yields a record of type Struct, regardless of whether it occurs within a type
declaration, in which case also a record of type Object (class = Typ) is generated, or in a variable
declaration, in which case the type remains anonymous. All types are characterized by a form and
a size. A type is either a basic type or a constructed type. In the latter case it refers to one or more
other types. Constructed types are arrays, records, pointers, and procedural types. The attribute
form refers to this classification. Its value is an integer

Just as different object classes are characterized by different attributes, different forms have
different attributes. Again, the introduction of extensions of type Struct was avoided. Instead, some
of the fields of type Struct remain unused in some cases, such as for basic types, and others are
used for form-specific attributes. For example, the attribute base refers to the element type in the
case of an array, to the result type in the case of a procedural type, to the type to which a pointer is
bound, or to the base type of a (extended) record type. The attribute dsc refers to the parameter list
in the case of a procedural type, or to the list of fields in the case of a record type.

As an example, consider the following declarations. The corresponding data structure is shown in
Fig. 12.5. For details, the reader is referred to the program listing of module ORB and the
respective explanations.

CONST N = 100;
TYPE Ptr = POINTER TO Rec;
 Rec = RECORD n: INTEGER; p, q: Ptr END ;
VAR k: INTEGER;
 a: ARRAY N OF INTEGER;
PROCEDURE P(x: INTEGER): INTEGER;

 30

Figure 12.5. Representation of declarations

Only entries representing constructed types are generated during compilation. An entry for each
basic type is established by the compiler's initialization. It consists of an Object holding the standard
type's identifier and a Struct indicating its form, denoted by one of the values Byte, Bool, Char, Int,
Real, or Set. The object records of the basic types are anchored in global pointer variables in
module ORB (which actually should be regarded as constants).

Not only are entries created upon initialization for basic types, but also for all standard procedures.
Therefore, every compilation starts out with a symbol table reflecting all standard, pervasive
identifiers and the objects they stand for.

We now return to the subject of Objects. Whereas objects of basic classes (Const, Var, Par, Fld,
Typ, SProc, SFunc and Mod) directly reflect declared identifiers and constitute the context in which
statements and expressions are compiled, compilations of expressions typically generate

name class

val
type

next
dsc

form size

typob base

nofpa len

type

dsc

Object Type

N Con

100

Ptr Typ

Rec Typ

k Var

0

a Var

4

P Con

NIL

Pointer 4

Record 12

 NIL

0 n Fld

0

p Fld

4

q Fld

8

NIL

Array 400

NIL

 100

Proc 4

NIL

1

Int 4

 dsc

x Var

4

NIL
intType

dsc

 31

anonymous entities of additional, non-basic modes. Such entities reflect selectors, factors, terms,
etc., i.e. constituents of expressions and statements. As such, they are of a transitory nature and
hence are not represented by records allocated on the heap. Instead, they are represented by
record variables local to the processing procedures and are therefore allocated on the stack. Their
type is called Item and is a slight variation of the type Object. Items are not referenced via pointers.

Let us assume, for instance, that a term x*y is parsed. This implies that the operator and both
factors have been parsed already. The factors x and y are represented by two variables of type
Item of Var mode. The resulting term is again described by an item, and since the product is
transitory, i.e. has significance only within the expression of which the term is a constituent, it is to
be held in a temporary location, in a register. In order to express that an item is located in a
register, a new, non-basic mode Reg is introduced.

Effectively, all non-basic modes reflect the target computer's architecture, in particular its
addressing modes. The more addressing modes a computer offers, the more item modes are
needed to represent them. The additional item modes required by the RISC processor are. They
are declared in module ORG:

Reg direct register mode
RegI indirect register mode
Cond condition code mode

The use of the types Object, Item, and Struct for the various modes and forms, and the meaning of
their attributes are explained in the following tables:

Objects: Items:

 class val | a b r

0 Undef |
1 Const val | val
2 Var adr | adr base
3 Par adr | adr off
4 Fld off | off
5 Typ TDadr | TDadr modno
6 SProc num
7 SFunc num
8 Mod

10 Reg | regno
11 RegI | off regno
12 Cond | Tjmp Fjmp condition code

Structures:

 form nofpar len dsc base

 7 Pointer base type
10 ProcTyp nofpar param result type
12 Array nofel element typ
13 Record ext lev desc adr fields extension type

Items have an attribute called lev which is part of the address of the item. Positive values denote
the level of nesting of the procedure in which the item is declared; lev = 0 implies a global object.
Negative values indicate that the object is imported from the module with number -lev.
The three types Object, Item, and Struct are defined in module ORB, which also contains
procedures for accessing the symbol table.

12.3.2. Module interfaces

 32

Before embarking on a presentation of the compiler's main module, the parser, an overview of its
remaining modules is given in the form of their interfaces. The reader is invited to refer to them
when studying the parser.

The interface of the scanner module ORS is simple. It defines the numeric values of all symbols.
But its chief constituent is procedure Get. Each call yields the next symbol from the source text,
identified by an integer. Global variables represent attributes of the read symbol in certain cases. If
a number was read, ival or rval hold its numeric value. If an identifier or a string was read, str holds
the ASCII values of the characters read.

Procedure Mark serves to generate a diagnostic output indicating a brief diagnostic and the
scanner's current position in the source text. This procedure is located in the scanner, because only
the scanner has access to its current position. Mark is called from all other modules.

DEFINITION ORS; (*Scanner*)
 IMPORT Texts, Oberon;

 TYPE Ident = ARRAY 32 OF CHAR;
 VAR ival, slen: INTEGER;
 rval: REAL;
 id: Ident;
 str: ARRAY 256 OF CHAR;
 errcnt: BOOLEAN;

 PROCEDURE Mark (msg: ARRAY OF CHAR);
 PROCEDURE Get (VAR sym: INTEGER);
 PROCEDURE Init (source: Texts.Text; pos: INTEGER);
END ORS.

Module ORB defines the basic data structures representing declared objects and their types. It also
contains procedures for accessing these structures. NewObj serves to insert a new identifier, and it
returns a pointer to the allocated object. ThisObj returns the pointer to the object whose name
equals the global scanner variable ORS.id. Thisimport and thisfield deliver imported objects and
record fields with names equal to ORS.id.

Procedure Import serves to read the specified symbol file and to enter its identifier in the symbol
table (class = Mod). Finally, Export generates the symbol file of the compiled module, containing
descriptions of all objects and structures marked for export.

DEFINITION ORB; (*Base table handler*)
 TYPE
 Object = POINTER TO ObjDesc;
 Type = POINTER TO TypeDesc;
 ObjDesc = RECORD
 class, lev, exnp: INTEGER;
 expo, rdo: BOOLEAN;
 next, dsc: Object;
 type: Type;
 name: ORS.Ident;
 val: INTEGER
 END ;
 TypeDesc = RECORD
 form, ref, mno: INTEGER; (*ref is used for import/export only*)
 nofpar: INTEGER; (*for records: extension level*)
 len: INTEGER; (*for records: address of descriptor*)
 dsc, typobj: Object;
 base: Type;
 size: INTEGER
 END ;

 VAR topScope: Object;
 byteType, boolType, charType, intType, realType, setType,
 nilType, noType, strType: Type;

 33

 PROCEDURE Init;
 PROCEDURE Close;
 PROCEDURE NewObj (VAR obj: Object; id: ORS.Ident; class: INTEGER);
 PROCEDURE thisObj (): Object;
 PROCEDURE thisimport (mod: Object): Object;
 PROCEDURE thisfield (rec: Type): Object;
 PROCEDURE OpenScope;
 PROCEDURE CloseScope;
 PROCEDURE Import (VAR modid, modid1: ORS.Ident);
 PROCEDURE Export (VAR modid: ORS.Ident;
 VAR newSF: BOOLEAN; VAR key: INTEGER);
END ORB.

Module ORG contains the procedures for code generation. The names of these procedures indicate
the respective constructs for which code is to be produced. Note that an individual code generator
procedure is provided for every standard, predefined procedure. This is necessary, because they
generate in-line code.

DEFINITION ORG;
 CONST WordSize* = 4;
 TYPE Item* = RECORD
 mode*: INTEGER;
 type*: ORB.Type;
 a*, b*, r: INTEGER;
 rdo*: BOOLEAN (*read only*)
 END ;
 VAR pc: INTEGER;

 PROCEDURE MakeConstItem*(VAR x: Item; typ: ORB.Type; val: INTEGER);
 PROCEDURE MakeRealItem*(VAR x: Item; val: REAL);
 PROCEDURE MakeStringItem*(VAR x: Item; len: INTEGER);
 PROCEDURE MakeItem*(VAR x: Item; y: ORB.Object; curlev: INTEGER);
 PROCEDURE Field*(VAR x: Item; y: ORB.Object); (* x := x.y *)
 PROCEDURE Index*(VAR x, y: Item); (* x := x[y] *)
 PROCEDURE DeRef*(VAR x: Item);
 PROCEDURE BuildTD*(T: ORB.Type; VAR dc: INTEGER);
 PROCEDURE TypeTest*(VAR x: Item; T: ORB.Type; varpar, isguard: BOOLEAN);

 PROCEDURE Not*(VAR x: Item); (* x := ~x, Boolean operators *)
 PROCEDURE And1*(VAR x: Item); (* x := x & *)
 PROCEDURE And2*(VAR x, y: Item);
 PROCEDURE Or1*(VAR x: Item); (* x := x OR *)
 PROCEDURE Or2*(VAR x, y: Item);

 PROCEDURE Neg*(VAR x: Item); (* x := -x, arithmetic operators *)
 PROCEDURE AddOp*(op: LONGINT; VAR x, y: Item); (* x := x +- y *)
 PROCEDURE MulOp*(VAR x, y: Item); (* x := x * y *)
 PROCEDURE DivOp*(op: INTEGER; VAR x, y: Item); (* x := x op y *)
 PROCEDURE RealOp*(op: INTEGER; VAR x, y: Item); (* x := x op y *)

 PROCEDURE Singleton*(VAR x: Item); (* x := {x}, set operators *)
 PROCEDURE Set*(VAR x, y: Item); (* x := {x .. y} *)
 PROCEDURE In*(VAR x, y: Item); (* x := x IN y *)
 PROCEDURE SetOp*(op: INTEGER; VAR x, y: Item); (* x := x op y *)

 PROCEDURE IntRelation*(op: INTEGER; VAR x, y: Item); (* x := x < y *)
 PROCEDURE SetRelation*(op: INTEGER; VAR x, y: Item); (* x := x < y *)
 PROCEDURE RealRelation*(op: INTEGER; VAR x, y: Item); (* x := x < y *)
 PROCEDURE StringRelation*(op: INTEGER; VAR x, y: Item); (* x := x < y *)

 PROCEDURE StrToChar*(VAR x: Item); (*assinments*)
 PROCEDURE Store*(VAR x, y: Item); (* x := y *)
 PROCEDURE StoreStruct*(VAR x, y: Item); (* x := y *)
 PROCEDURE CopyString*(VAR x, y: Item); (*from x to y*)

 34

 PROCEDURE VarParam*(VAR x: Item; ftype: ORB.Type); (*parameters*)
 PROCEDURE ValueParam*(VAR x: Item);
 PROCEDURE OpenArrayParam*(VAR x: Item);
 PROCEDURE StringParam*(VAR x: Item);

 PROCEDURE For0*(VAR x, y: Item); (*For Statements*)
 PROCEDURE For1*(VAR x, y, z, w: Item; VAR L: LONGINT);
 PROCEDURE For2*(VAR x, y, w: Item);

 (* Branches, procedure calls, procedure prolog and epilog *)
 PROCEDURE Here*(): LONGINT;
 PROCEDURE FJump*(VAR L: LONGINT);
 PROCEDURE CFJump*(VAR x: Item);
 PROCEDURE BJump*(L: LONGINT);
 PROCEDURE CBJump*(VAR x: Item; L: LONGINT);
 PROCEDURE Fixup*(VAR x: Item);
 PROCEDURE PrepCall*(VAR x: Item; VAR r: LONGINT);
 PROCEDURE Call*(VAR x: Item; r: LONGINT);
 PROCEDURE Enter*(parblksize, locblksize: LONGINT; int: BOOLEAN);
 PROCEDURE Return*(form: INTEGER; VAR x: Item; size: LONGINT; int: BOOLEAN);

 (* In-line code procedures*)
 PROCEDURE Increment*(upordown: LONGINT; VAR x, y: Item);
 PROCEDURE Include*(inorex: LONGINT; VAR x, y: Item);
 PROCEDURE Assert*(VAR x: Item);
 PROCEDURE New*(VAR x: Item);
 PROCEDURE Pack*(VAR x, y: Item);
 PROCEDURE Unpk*(VAR x, y: Item);
 PROCEDURE Led*(VAR x: Item);
 PROCEDURE Get*(VAR x, y: Item);
 PROCEDURE Put*(VAR x, y: Item);
 PROCEDURE Copy*(VAR x, y, z: Item);
 PROCEDURE LDPSR*(VAR x: Item);
 PROCEDURE LDREG*(VAR x, y: Item);

 (*In-line code functions*)
 PROCEDURE Abs*(VAR x: Item);
 PROCEDURE Odd*(VAR x: Item);
 PROCEDURE Floor*(VAR x: Item);
 PROCEDURE Float*(VAR x: Item);
 PROCEDURE Ord*(VAR x: Item);
 PROCEDURE Len*(VAR x: Item);
 PROCEDURE Shift*(fct: LONGINT; VAR x, y: Item);
 PROCEDURE ADC*(VAR x, y: Item);
 PROCEDURE SBC*(VAR x, y: Item);
 PROCEDURE UML*(VAR x, y: Item);
 PROCEDURE Bit*(VAR x, y: Item);
 PROCEDURE Register*(VAR x: Item);
 PROCEDURE H*(VAR x: Item);
 PROCEDURE Adr*(VAR x: Item);
 PROCEDURE Condition*(VAR x: Item);

 PROCEDURE Open*(v: INTEGER);
 PROCEDURE SetDataSize*(dc: LONGINT);
 PROCEDURE Header*;
 PROCEDURE Close*(VAR modid: ORS.Ident; key, nofent: LONGINT);
END ORG.

12. 4. The Parser
The main module ORP constitutes the parser. Its single command Compile - at the end of the
program listing - identifies the source text according to the Oberon command conventions. It then
calls procedure Module with the identified source text as parameter. The command forms are:

 35

ORP.Compile @ The most recent selection identifies the beginning of the source text.
ORP.Compile ^ The most recent selection identifies the name of the source file.
ORP.Compile f0 f1 ... ~ f0, f1, ... are the names of source files.

File names and the characters @ and ^ may be followed by an option specification /s. Option s
enables the compiler to overwrite an existing symbol file, thereby invalidating clients.

The parser is designed according to the proven method of top-down, recursive descent parsing with
a look-ahead of a single symbol. The last symbol read is represented by the global variable sym.
Syntactic entities are mirrored by procedures of the same name. Their goal is to recognize the
specified construct in the source text. The start symbol and corresponding procedure is Module.
The principal parser procedures are shown in Fig. 12.6., which also exhibits their calling hierarchy.
Loops in the diagram indicate recursion in the syntactic definition.

Figure 12.6 Parser procedure hierarchy

The rule of parsing strictly based on a single-symbol look-ahead and without reference to context is
violated in three places. The prominent violation occurs in statements. If the first symbol of a
statement is an identifier, the decision of whether an assignment or a procedure call is to be
recognized is based on contextual information, namely the class of the identified object. The
second violation occurs in qualident; if the identifier x preceding a period denotes a module, it is
recognized together with the subsequent identifier as a qualified identifier. Otherwise x supposedly
denotes a record variable. The third violation is made in procedure selector; if an identifier is
followed by a left parenthesis, the decision of whether a procedure call or a type guard is to be
recognized is again made on the basis of contextual information, namely the mode of the identified
object.

A fairly large part of the program is devoted to the discovery of errors. Not only should they be
properly diagnosed. A much more difficult requirement is that the parsing process should continue
on the basis of a good guess about the structure that the text should most likely have. The parsing
process must continue with some assumption and possibly after skipping a short piece of the

Module

ProcDecl StatSeq

Type ProcType

ArrayType RecType

Declarations

FPSec

FormalTyp

expression

term

factorParamList

set

SimpleExp

element

Parameter

 36

source text. Hence, this aspect of the parser is mostly based on heuristics. Incorrect assumptions
about the nature of a syntactic error lead to secondary error diagnostics. There is no way to avoid
them. A reasonably good result is obtained by the fact that procedure ORS.Mark inhibits an error
report, if it lies less than 10 characters ahead of the last one. Also, the language Oberon is
designed with the property that most large constructs begin with a unique symbol, such as IF,
WHILE, CASE, RECORD, etc. These symbols facilitate the recovery of the parsing process in the
erroneous text. More problematic are open constructs which neither begin nor end with key
symbols, such as types, factors, and expressions. Relying on heuristics, the source text is skipped
up to the first occurrence of a symbol which may begin a construct that follows the one being
parsed. The employed scheme may not be the best possible, but it yields quite acceptable results
and keeps the amount of program devoted to the handling of erroneous texts within justifiable
bounds.

Besides the parsing of text, the Parser also performs the checking for type consistency of objects.
This is based on type information held in the global table, gained during the processing of
declarations, which is also handled by the routines which parse. Thereby an unjustifiably large
number of very short procedures is avoided. However, the strict target-computer independence of
the parser is violated slightly: Information about variable allocation strategy including alignment, and
about the sizes of basic types is used in the parser module. Whereas the former violation is
harmless, because the allocation strategy is hardly controversial, the latter case constitutes a
genuine target-dependence embodied in a number of explicitly declared constants. Mostly these
constants are contained in the respective type definitions, represented by records of type Type
initialized by ORB. The following procedures allocate objects and generate elements of the symbol
table:

Declarations Object(Con), Object(Typ), Object(Var)
ProcedureDeclaration Object(xProc)
FormalType Object(Var), Object(Par)
ORB.Import Object(Mod)
RecordType Object(Fld), Type(Record)
ArrayType Type(Array)
ProcedureType Type(ProcTyp)
Type Type(Pointer)
FormalType Type(Array)

An inherently nasty subject is the treatment of forward references in a single-pass compiler. In
Oberon, there are two such cases:

1. Forward declarations of procedures. They have been eliminated from the revision of the Oberon
language in the year 2007 as they should be avoided if ever possible. If it is impossible, a remedy is
to declare a variable of the given procedure type, and assign the procedure to be forwarded to this
variable. The nastiness of procedure forward declarations originates in the necessity to specify
parameters and result type in the forward declaration. These must be repeated in the actual
procedure declaration, and one expects that a compiler verifies the equality (or equivalence) of the
two declarations. This is a heavy burden for a case that very rarely occurs.

2. Forward declarations of pointer types also constitutes a nasty exception, but its exclusion would
be difficult to justify. If in a pointer declaration the base type (to which the pointer is bound) is not
found in the symbol table, a forward reference is therefore automatically assumed. An entry for the
pointer type is generated anyway (see procedure Type) and an element is inserted in the list of
pointer base types to be fixed up. This list is headed by the global variable pbsList. When later in
the text a declaration of a record type is encountered with the same identifier, the forward entry is
recognized and the proper link is established (see procedure Declarations).

The compiler must check for undefined forward references when the current declaration scope is
closed. This check is performed at the end of procedure Declarations.

 37

The with statement had been eliminated from the language in its revision of 2007. Here it reappears
in the form of a case statement, whose cases are not labelled by integers, but rather by types. What
formerly was written as

IF x IS T1 THEN
 WITH x: T1 DO ... x ... END
ELSIF x IS T2 THEN
 WITH x: T2 DO ... x ... END
ELSIF ...
END

is now written more simply and more efficiently as

CASE x OF
 T1: ... x ... |
 T2: ... x ... |
...
END

where T1 and T2 are extensions of the type T0 of the case variable x. Compilation of this form of
case statement merges the regional type guard of the former with statements with the type test of
the former if statements. This case statement represents the only case where a symbol table entry -
the type of x - is modified during compilation of statements. When the end of the with statement is
reached, the change must be reverted.

12.5. The scanner
The scanner module ORS embodies the lexicographic definitions of the language, i.e. the definition
of abstract symbols in terms of characters. The scanner's substance is procedure Get, which scans
the source text and, for each call, identifies the next symbol and yields the corresponding integer
code. It is most important that this process be as efficient as possible. Procedure Get recognizes
letters indicating the presence of an identifier (or reserved word), and digits signalling the presence
of a number. Also, the scanner recognizes comments and skips them. The global variable ch
stands for the last character read.

A sequence of letters and digits may either denote an identifier or a key word. In order to determine
which is the case, a search is made in a table containing all key words for each would-be identifier.
This table is sorted alphabetically and according to the length of reserved words. It is initialized
when the compiler is loaded.

The presence of a digit signals a number. Procedure Number first scans the subsequent digits (and
letters) and stores them in a buffer. This is necessary, because hexadecimal numbers are denoted
by the postfix letter H (rather than a prefix character). The postfix letter X specifies that the digits
denote a character.

There exists one case in the language Oberon, where a look-ahead of a single character does not
suffice to identify the next symbol. When a sequence of digits is followed by a period, this period
may either be the decimal point of a real number, or it may be the first element of a range symbol (
..). Fortunately, the problem can be solved locally as follows: If, after reading digits and a period, a
second period is present, the number symbol is returned, and the look-ahead variable ch is
assigned the special value 7FX. A subsequent call of Get then delivers the range symbol.
Otherwise the period after the digit sequence belongs to the (real) number.

12.6. Searching the symbol table, and handling symbol files
12.6.1. The structure of the symbol table

The symbol table constitutes the context in which statements and expressions are parsed. Each
procedure establishes a scope of visibility of local identifiers. The records registering identifiers
belonging to a scope are linked as a linear list. They are of type Object. Each object has a type.

 38

Types are represented by records of type Type. These two types pervade the entire compiler, and
they are defined as follows:

TYPE Object = POINTER TO ObjDesc;
 Type = POINTER TO TypeDesc;

 ObjDesc = RECORD
 class, lev, exno: INTEGER;
 expo, rdo: BOOLEAN; (*exported / read-only*)
 next, dsc: Object;
 type: Type;
 name: ORS.Ident;
 val: INTEGER
 END ;

 TypeDesc = RECORD
 form, ref, mno: INTEGER; (*ref is only used for import/export*)
 nofpar: INTEGER; (*for procedures; extension level for records*)
 len: INTEGER; (*for arrays, len < 0 => open array; for records: adr of descriptor*)
 dsc, typobj: Object;
 base: Type; (*for arrays, records, pointers*)
 size: INTEGER; (*in bytes; always multiple of 4, except for Byte, Bool and Char*)
 END ;

Procedures for generating and searching the lists are contained in module ORB. If a new identifier
is to be added, procedure NewObj first searches the list, and if the identifier is already present, a
double definition is diagnosed. Otherwise the new element is appended, thereby preserving the
order given by the source text.

Procedures, and therefore also scopes, may be nested. Each scope is represented by the list of its
declared identifiers, and the list of the currently visible scopes are again connected as a list.
Procedure OpenScope appends an element and procedure CloseScope removes it. The list of
scopes is anchored in the global variable topScope and linked by the field dsc. It is treated like a
stack. It consists of elements of type Object, each one being the header (class = Head) of the list of
declared entities. As an example, the procedure for searching an object (with name ORS.id) is
shown here:

PROCEDURE thisObj*(): Object;
 VAR s, x: Object;
BEGIN s := topScope;
 REPEAT x := s.next;
 WHILE (x # NIL) & (x.name # ORS.id) DO x := x.next END ;
 s := s.dsc
 UNTIL (x # NIL) OR (s = NIL);
 RETURN x
END thisObj;

A snapshot of a symbol table for an example with nested scopes is shown in Fig. 12.6. It is taken
when the following declarations are parsed and when the statement S is reached.

VAR x: INTEGER;

PROCEDURE P(u: INTEGER);
BEGIN ... END P;

PROCEDURE Q(v: INTEGER);
 PROCEDURE R(w: INTEGER);
 BEGIN S END R;
BEGIN ... END Q;

 39

Fig. 12.7 Snapshot of a symbol table

A search of an identifier proceeds first through the scope list, and for each header its list of object
records is scanned. This mirrors the scope rule of the language and guarantees that if several
entities carry the same identifier, the most local one is selected. The linear list of objects represents
the simplest implementation by far. A tree structure would in many cases be more efficient for
searching, and would therefore seem more recommendable. Experiments have shown, however,
that the gain in speed is marginal. The reason is that the lists are typically quite short. The
superiority of a tree structure becomes manifest only when a large number of global objects is
declared. We emphasize that when a tree structure is used for each scope, the linear lists must still
be present, because the order of declarations is sometimes relevant in interpretation, e.g. in
parameter lists.

Not only procedures, but also record types establish their own local scope. The list of record fields
is anchored in the type record's field dsc, and it is searched by procedure thisField. If a record type
R1 is an extension of R0, then R1's field list contains only the fields of the extension proper. The
base type R0 is referenced by the BaseTyp field of R1. Hence, a search for a field may have to
proceed through the field lists of an entire sequence of record base types.

12.6.2. Symbol files

The major part of module ORB is devoted to input and output of symbol files. A symbol file is a
linearized form of an excerpt of the symbol table containing descriptions of all exported (marked)
objects. All exports are declared in the global scope. Procedure Export traverses the list of global
objects and outputs them to the symbol file.

The structure of a symbol file is defined by the syntax specified below. The following terminal
symbols are class and form specifiers or reference numbers for basic types with fixed values:

Classes: Con = 1, Var = 2, Par = 3, Fld = 4; Typ = 5

Forms: Byte = 1, Bool = 2, Char = 3, Int = 4, LInt = 5, Set = 6,
 Pointer = 7, NoTyp = 9, ProcTyp = 10, Array = 12, Record = 13

Syntax:
SymFile = null key name versionkey {object}.
object = (CON name type (value | exno) | TYP name type [{fix} 0] | VAR name type expno).
type = ref (PTR type | ARR type len | REC type {field} 0 | PRO type {param} 0].

name class

dsc next
 Head

w Var

Int NIL

 Head

v Var

Int

 Head

NIL

x Var

Int

P Cons

type

Q Cons

type NIL

R Cons

type NIL

Proc

dsc

Proc

dsc

u Var

Int NIL

topScope

Proc

dsc

 40

field = FLD name type offset.
param = (VAR | PAR) type.

A procedure type description is contains a parameter list. Similarly, a record type description with
form specifier Record contains the list of field descriptions. Note that a procedure is considered as a
constant of a procedure type.

Objects have types, and types are referenced by pointers. These cannot be written on a file. The
straight-forward solution would be to use the type identifiers as they appear in the program to
denote types. However, this would be rather crude and inefficient, and second, there are
anonymous types, for which artificial identifiers would have to be generated.

An elegant solution lies in consecutively numbering types. Whenever a type is encountered the first
time, it is assigned a unique reference number. For this purpose, records (in the compiler) of type
Type contain the field ref. Following the number, a description of the type is then written to the
symbol file. When the type is encountered again during the traversal of the data structure, only the
reference number is issued, with negative sign. The global variable ORB.Ref functions as the
running reference number.

When reading a symbol file, a positive reference number is followed by the type's description. A
pointer to the type read is assigned to the global table typtab with the reference number as index.
When a negative reference number is read (it is not followed by a type description), then the type is
identified by typtab[-ref] (see procedure InType). In the following example, types are identified by
their reference number (e.g. R #14), and later referenced by this number (^14).

MODULE A;
 CONST Ten* = 10; Dollar* = "$";
 TYPE R* = RECORD u*: INTEGER; v*: SET END ;
 S* = RECORD w*: ARRAY 4 OF R END ;
 P* = POINTER TO R;
 A* = ARRAY 8 OF INTEGER;
 B* = ARRAY 4, 5 OF REAL;
 C* = ARRAY 10 OF S;
 D* = ARRAY OF CHAR;
 VAR x*: INTEGER;
 PROCEDURE Q0*;
 BEGIN END Q0;
 PROCEDURE Q1*(x, y: INTEGER): INTEGER;
 BEGIN RETURN x+y END Q1;
END A.

class = CON Ten [^4] 10
class = CON Dollar [^3] 36
class = TYP R [#14 form = REC [^9] exno = 1 extlev = 0 size = 8 { v [^6] 4 u [^4] 0}]()
class = TYP S [#15 form = REC [^9] exno = 2 extlev = 0 size = 32 { w [#0 form = ARR [^14] len = 4 size = 32] 0}]()
class = TYP P [#16 form = PTR [^14]]()
class = TYP A [#17 form = ARR [^4] len = 8 size = 32]()
class = TYP B [#18 form = ARR [#0 form = ARR [^5] len = 5 size = 20] len = 4 size = 80]()
class = TYP C [#19 form = ARR [^15] len = 10 size = 320]()
class = TYP D [#20 form = ARR [^3] len = -1 size = 8]()
class = VAR x [^4] 3
class = CON Q0 [#0 form = PRO [^9]()] 4
class = CON Q1 [#0 form = PRO [^4](class = VAR [^4] class = VAR [^4])] 5

After a symbol file has been generated, it is compared with the file from a previous compilation of
the same module, if one exists. Only if the two files differ and if the compiler's s-option is enabled, is
the old file replaced by the new version. The comparison is made by comparing byte after byte
without consideration of the file's structure. This somewhat crude approach was chosen because of
its simplicity and yielded good results in practice.

A symbol file must not contain addresses (of variables or procedures). If they did, most changes in
the program would result in a change of the symbol file. This must be avoided, because changes in

 41

the implementation (rather than the interface) of a module are supposed to remain invisible to the
clients. Only changes in the interface are allowed to effect changes in the symbol file, requiring
recompilation of all clients. Therefore, addresses are replaced by export numbers. The variable
exno (global in ORP) serves as running number (see ORP.Declarations and ORP.ProcedureDecl).
The translation from export number to address is performed by the loader. Every code file contains
a list (table) of addresses (of variables and entry points for procedures). The export number serves
as index in this table to obtain the requested address. Export numbers are generated by the parser.

Objects exported from some module M1 may refer in their declaration to some other module M0
imported by M1. It would be unacceptable, if an import of M1 would then also require the import of
M0, i.e. imply the automatic reading of M01's symbol file. It would trigger a chain reaction of imports
that must be avoided. Fortunately, such a chain reaction can be avoided by making symbol files
self-contained, i.e. by including in every symbol file the description of entities that stem from other
modules. Such entities are always types.

The inclusion of types imported from other modules seems simple enough to handle: type
descriptions must include a reference to the module from which the type was imported. This
reference is the name and key of the respective module. However, there exists one additional
complication that cannot be ignored. Consider a module M1 importing a variable x from a module
M0. Let the type T of x be defined in module M0. Also, assume M1 to contain a variable y of type
M0.T. Evidently, x and y are of the same type, and the compiler compiling M2 must recognize this
fact. Hence, when importing M0 during compilation of M1, the imported element T must not only be
registered in the symbol table, but it must also be recognized as being identical to the T already
imported from M2 directly. It is rather fortunate that the language definition specifies equivalence of
types on the basis of names rather than structure, because it allows type tests at execution time to
be implemented by a simple address comparison.

The measures to be taken to satisfy the new requirements are as follows:

1. Every type element in a symbol file is given a module number. Before a type description is
emitted to the file.

2. If a type to be exported has a name and stems from another, imported module, then also the
name and key of the module are attached, from which the type stems (see end of procedure
ORB.OutType and end of ORB.InType).

An additional detail is worth being mentioned here: Hidden pointers. We recall that individual fields
of exported record types may be hidden. If marked (by an asterisk) they are exported and therefore
visible in importing modules. If not marked, they are not exported and remain invisible, and
evidently seem to be omissible in symbol files. However, this is a fallacy. They need to be included
in symbol files, although without name, because of meta information to be provided for garbage
collection. This is elucidated as follows:

Assume that a module M1 declares a global pointer variables of a type imported from module M0.
MODULE M0;
 TYPE Ptr = POINTER TO Rec0;
 Rec0* = RECORD p*, q: Ptr ... END ;
END M0.

MODULE M1;
 VAR p: M0.Ptr;
 r: RECORD f: M0.Ptr; ... END ;
END M1.

Here p and r.f are roots of data structures that must be visited by the garbage collector. If they are
not, they will not be marked, and therefore collected with disastrous and entirely unpredictable
consequences. The crux is that not only exported pointers (p.p) must be listed, but also hidden
ones (p.q), although they are not accessible in module M1.

 42

We chose to include hidden pointers in symbol files without their names, but with their type being of
the form ORB.NilTyp. This must be considered in procedure ORG.FindPtrs, where the condition
typ.form = ORB.Pointer must be extended to (typ.form = ORB.Pointer) OR (typ.form = ORB.NilTyp).

But the story does not end here. Assume that in the example above module M1 declares a type
Rec1 as a n extension of M0.Rec0. This requires the generation of a type descriptor. And this
descriptor must include not only field p, but also the hidden field q. This is achieved by also
extending the condition typ.form = ORB.Pointer in ORG.FindPtrFlds to (typ.form = ORB.Pointer)
OR (typ.form = ORB.NilTyp).

12. 7. The code generator
The routines for generating instructions are contained in a single module: ORG. They are fairly
numerous, and therefore the interface of ORG is quite large. It is a procedural interface. This
implies that there is no "intermediate code" or "intermediate data structure" between parser and
code generator. This is one reason for the compactness of the code generator. The other is the
regularity and simplicity of the processor architecture. In order to understand the following material,
the reader is supposed to be familiar with this architecture (Appendix 2) and the generated code
patterns for individual language constructs (Section 12.2).

A distinguishing feature of this compiler is that parsing proceeds top-down according to the principle
of recursive descent in the parsing tree. This implies that for every syntactic construct a specific
procedure is called. It carries the same name as the construct. It also implies that properties of the
parsed construct can be represented by parameters of the parsing procedures. Consider, for
example, the construct of simple expression:

SimpleExpression = term {"+" term}.

The corresponding parsing procedure is
PROCEDURE SimpleExpression(VAR x: Item);
 VAR y: Item;
BEGIN term(x);
 WHILE sym = plus DO ORS.Get(sym); term(y); ORG.AddOp(x, y) END
END SimpleExpression

The generating procedure AddOp receives two parameters representing the operands, and returns
the result through the first parameter. This scheme carries the invaluable advantage of using
operands efficiently allocated on the stack rather than dynamically allocated on the heap and
subject to automatic storage retrieval (garbage collection). Here the processed operands quietly
disappear from the stack upon exit from the parser procedure.

The parameters representing syntactic constructs are of type Item defined in ORG. This data type
is rather similar to the type Object (in ORB). After all, it serves the same purpose; but it represents
internal items rather than declared objects.

TYPE Item = RECORD
 mode: INTEGER;
 type: ORB.Type;
 a, b, r: INTEGER;
 rdo: BOOLEAN (*read only*)
END

The attribute class of Object is renamed mode in Item. In fact, in some sense different classes
evoke different (corresponding) addressing modes as featured by the processor architecture.
According to the architecture, additional modes may have to be introduced. Thanks to the simplicity
of RISC, only three are needed:

Reg = 10; The item x is located in register x.r
RegI = 11; The item x is addressed indirectly through register x.r plus offset x.a
Cond = 12; The item is represented by the condition bit registers

 43

Instructions are emitted sequentially and emitted by the four procedures Put0, Put1, Put2, Put3.
They directly correspond to the instruction formats of the RISC processor (see Chapter 11). The
instructions are stored in the array code and the compiler variable pc serves as running index.

PROCEDURE Put0(op, a, b, c: INTEGER); format F0
PROCEDURE Put1(op, a, b, im: INTEGER); format F1
PROCEDURE Put2(op, a, b, off: INTEGER); format F2
PROCEDURE Put3(op, cond, off: INTEGER); format F3

12.7.1. Expressions

Expressions consist of operands and operators. They are evaluated and have a value. First, a
number of make-procedures transform objects into items (see Section 12.3.2). The principal one is
MakeItem. Typical objects are variables (class, mode = Var). Global variables are addressed with
base register SB (x.r = 13), local variables with the stack pointer SP (x.r = 14). VAR-parameters
are addressed indirectly; the address is on the stack (class, mode = Par, Ind). x.a is the offset from
the stack pointer.

Before an operator can be applied to operands, these must first be transferred (loaded) into
registers. This is because the RISC performs operations only on registers. The loading is achieved
by procedure load (and loadAdr) in ORG. The resulting mode is Reg. In allocating registers, a strict
stack principle is used, starting with R0, up to R11. This is certainly not an optimal strategy and
provides ample room for improvement (usually called optimization). The compiler variable RH
indicates the next free register (top of register stack).

Base address SB is, as the name suggests, static. But this holds only within a module. It implies
that on every transfer to a procedure in another module, the static base must be adjusted. The
simplest way is to load SB before every external call, and to restore it to its old value after return
from the procedure. We chose a different strategy: loading on demand (see below: global
variables).

If a variable is indexed, has a field selector, is dereferenced, or has a type guard, this is detected in
the parser by procedure selector. It calls generators Index, Field, DeRef, or TypeTest accordingly
(see Section 12.3.2. and patterns 1 - 4 in Section 12.2). These procedures cause item modes to
change as follows:

mode transition of x instructions emitted construct

1. Index(x, y) (y is loaded into y.r)
Var --> RegI ADD y.r, SP, y.r array variable

Par --> RegI LDR RH, SP, x.a array parameter
 ADD y.r, RH, y.r

RegI --> RegI ADD x.r, x.r, y.r indexed array

2. Field(x, y) (y.mode = Fld, y.a = field offset)
Var --> Var none field designator, add offset to x.a
RegI --> RegI none add field offset to x.a
Par --> Par none add field offset to x.b

3. DeRef(x)
Var --> RegI LDR RH, SP, x.a dereferenced x^

Par --> RegI LDR RH, SP, x.a dereferenced parameter x^
 LDR RH, RH, x.b

RegI --> RegI LDR x.r, x.r, x.a

A fairly large number of procedures then deal with individual operators. Specifically, they are Not,
And1, And2, Or1, Or2 for Boolean operators, Neg, AddOp, MulOp, DivOp for operations on
integers, RealOp for operations on real numbers, and Singleton, Set, In, and SetOp for operations

 44

on Sets. And finally, following the same pattern, are the procedures for relations (comparisons)
IntRelation, SetRelation, RealRelation, StringRelation. (see Appendix for listing of ORG). We note
in particular that if all operands are constants, their evaluation is performed by the compiler and not
delegated to run-time. This is an important efficiency factor.

12.7.2. Relations

RISC does not feature any compare instruction. Instead, subtraction is used, because an implicit
comparison wth 0 is performed along with any arithmetic (or load) instruction. Instead of x < y we
use x-y < 0. This is possible, because in addition to the computed difference deposited in a register,
also the result of the comparison is deposited in the condition flags N (difference negative) and Z
(difference zero). Relations therefore yield a result item x with mode Cond. x.r (= relmap[sym])
identifies the relation. Branch instructions (jumps) are executed conditionally depending on these
flags. The value x.r is then used when generating branch instructions. For example, the relation x <
y is translated simply into

LDR R0, SP, x
LDR R1, SP, y
CMP R0, R0, R1

and the resulting item mode is x.mode = Cond, x.r := "less". (The mnemonic CMP is synonymous
with SUB). More about relations and Boolean expressions will be explained in Section 12.7.6.

12.7.3. Set operations

The type SET represents sets of small integers in the range from 0 to 31. Bit i being 1 signals that i
is an element of the set. This is a convenient representation, because the logical instructions
directly mirror the set operations: AND implements set intersection, OR set union, and XOR the
symmetric set difference. This representation also allows a simple and efficient implementation of
membership tests. The instructions for the expression n IN s is generated by procedure In.
Assuming the value n in register R0, and the set s in R1, we obtain

ADD R0, R0, 1
ROR R1, R1, R0 rotate s by i+1 position, the relevant bit moving to the sign bit

The resulting item mode is Cond with x.r = "minus".

Of some interest are the procedures for generating sets, i.e. for processing {m}, {m .. n}, and {m, n},
where m, n are integer expressions.

We start with {m}. It is generated by procedure Singleton using a shift instruction. Assuming m in
R0, the resulting code is

MOV R1, 0, 1
LSL R0, R1, R0 shift 1 by m bit positions to the left

Somewhat more sophisticated is the generation of {m .. n} by procedure Set. Assuming m in R0,
and n is R1, the resulting code is

MOV R2, 0, -2
LSL R1, R2, R1 shift -2 by n bit positions to the left
MOV R2, 0, -1
LSL R0, R2, R0 shift -1 by m bit positions to the left
XOR R0, R0, R1

The set {m, n} is generated as the union of {m} and {n}. If any of the element values is a constant,
several possibilities of code improvement are possible. For details, the reader is referred to the
source code of ORG.

12.7.4. Assignments

 45

Statements have an effect, but no result like expressions. Statements are executed, not evaluated.
Assignments alter the value of variables through store instructions. The computation of the address
of the affected variable follows the same scheme as for loading. The value to be assigned must be
in a register.

Assignments of arrays (and records) are an exceptional case in so far as they are performed not by
a single store instruction, but by a repetition. Consider y := x, where x, and y are both arrays of n
integers. Assuming that the address of y is in register R0, that of x in R1, and the value n in R2.
Then the resulting code is

L LDR R3, R1, 0 source
 ADD R1, R1, 4
 STR R3, R0, 0 destination
 ADD R0, R0, 4
 SUB R2, R2, 1 counter
 BNE L

12.7.5. Conditional and repetitive statements

These statements are implemented using branch instructions (jumps) as shown in Section 12.2,
Patterns 5 - 7. In all repetitive statements, backward jumps occur. Here, at the point of return the
value of the global variable ORG.pc is saved in a local (!) variable of the involved parsing
procedure. It is retrieved when the backward jump is emitted. We note that branch instructions use
a displacement rather than an absolute destination address. It is the difference between the branch
instruction and the destination of the jump.

A difficulty, however, arises in the case of forward jumps, a difficulty inherent in all single-pass
compilers: When the branch is issued, its destination is still unknown. It follows that the branch
displacement must be later inserted when it becomes known, when the destination is reached. This
is called a fixup. Here the method of fixup lists is used. The place of the instruction with still
unknown destination is held in a variable L local to the respective parsing procedure. If several
branches have the same destination, L is the heading of a list of the instructions to be fixed up, with
its links placed in the instructions themselves in the place of the eventual jump displacement. This
shown for the if statement by an excerpt of ORP.StatSequence with local variable L0:

ELSIF sym = ORS.if THEN
 ORS.Get(sym); expression(x); ORG.CFJump(x);
 StatSequence; L0 := 0;
 WHILE sym = ORS.elsif DO
 ORS.Get(sym); ORG.FJump(L0); ORG.Fixup(x); expression(x);
 ORG.CFJump(x); Check(ORS.then, "no THEN"); StatSequence
 END ;
 IF sym = ORS.else THEN ORS.Get(sym); ORG.FJump(L0); ORG.Fixup(x); StatSequence
 ELSE ORG.Fixup(x)
 END ;
 ORG.FixLink(L0);

where in module ORG:
 PROCEDURE CFJump(VAR x: Item); (*conditional forward jump*)
 BEGIN
 IF x.mode # Cond THEN loadCond(x) END ;
 Put3(BC, negated(x.r), x.a); FixLink(x.b); x.a := pc-1
 END CFJump;

 PROCEDURE FJump(VAR L: LONGINT); (*unconditional forward jump*)
 BEGIN Put3(BC, 7, L); L := pc-1
 END FJump;

 PROCEDURE fix(at, with: LONGINT);
 BEGIN code[at] := code[at] DIV C24 * C24 + (with MOD C24)
 END fix;

 46

 PROCEDURE FixLink(L: LONGINT);
 VAR L1: LONGINT;
 BEGIN invalSB;
 WHILE L # 0 DO L1 := code[L] MOD 40000H; fix(L, pc-L-1); L := L1 END
 END FixLink;

 PROCEDURE Fixup(VAR x: Item);
 BEGIN FixLink(x.a)
 END Fixup;

In while-, repeat-, and for statements essentially the same technique is used with the support of the
identical procedures in ORG.

12.7.6. Boolean expressions

In the case of arithmetic expressions, our compilation scheme results in a conversion from infix to
postfix notation (x+y => xy+). This is not applicable for Boolean expressions, because the
operators & and OR are defined as follows:

x & y --> if x then y else FALSE
x OR y -- > if x then TRUE else y

This entails that depending on the value of x, y must not be evaluated. As a consequence, jumps
may have to be taken across the code for y. Therefore, the same technique of conditional
evaluation must be used as for conditional statements. In the case of an expression x & y (x OR y),
procedure ORG.And1 resp. ORG.Or1 must be called just after parsing x (see ORP.term resp.
ORP.SimpleExpression). Only after parsing also y can the generators ORG.And2 resp. ORG(Or2)
be called, providing the necessary fixups of forward jumps.

PROCEDURE And1(VAR x: Item); (* x := x & *)
BEGIN
 IF x.mode # Cond THEN loadCond(x) END ;
 Put3(BC, negated(x.r), x.a); x.a := pc-1; FixLink(x.b); x.b := 0
END And1;

PROCEDURE And2(VAR x, y: Item);
BEGIN
 IF y.mode # Cond THEN loadCond(y) END ;
 x.a := merged(y.a, x.a); x.b := y.b; x.r := y.r
END And2;

A negative consequence of this scheme having condition flags in the processor is that when an
item with mode Cond has to be transferred into mode Reg, as in a Boolean assignment, an
unpleasantly complex instruction sequence must be generated. Fortunately, this case occurs quite
rarely.

12.7.7. Procedures

Before embarking on an explanation of procedure calls, entries and exits, we need to know how
recursion is handled and how storage for local variables is allocated. Procedure calls cause a
sequence of frames to be allocated in a stack fashion. These frames are the storage space for local
variables. Each frame is headed by a single word containing the return address of the call. This
address is deposited in R15 by the call instructions (BL, branch and link). The compiler "knows" the
size of the frame to be allocated, and thus merely decrements the stack pointer SP (R14) by this
amount. Upon return, SP is incremented by the same amount, and PC is restored by a branch
instruction. In the following example, a procedure P is called, calling itself Q, and Q calling P again
(recursion). The stack then contains 3 frames (see Figure 12.7).

 47

Figure 12.7 Stack frames

Scheme and layout determine the code sequences for call, entry and exit of procedures. Here is an
example of a procedure P with 2 parameters:

Call: LDR R0, param0
 LDR R1, param1
 BL P

Prolog: SUB SP, SP, size decrement SP
 STR LNK, SP, 0 push return adr
 STR R0, SP, 4 push parameter 0
 STR R1, SP, 8 push parameter1

Epilog: LDR LNK, SP, 0 pop return adr
 ADD SP, SP, size increment SP
 BR LNK

When the call instruction is executed, parameters reside in registers, starting with R0. For function
procedures, the result is passed in register R0. This scheme is very efficient; storing the parameters
occurs only in a single place, namely at procedure entry, and not before each call. However, it has
severe consequences for the entire register allocation strategy. Throughout the compiler, registers
must be allocated in strict stack fashion. Furthermore, parameter allocation must start with R0. This
is a distinct drawback for function calls. If registers are occupied by other values loaded prior to the
call, they must be cleared, i.e. the parameters must be saved and reloaded after return. This is
rather cumbersome (see procedures ORG.SaveRegisters and ORG.RestoreRegisters).

F(x) no register saving
x + F(x)
F(F(x))
(x+1) + F(x) register saving necessary

12.7.8. Type extension

Static typing is an important principle in programming languages. It implies that every constant,
variable or function is of a certain data type, and that this type can be derived by reading the
program text without executing it. It is the key principle to introduce important redundancy in
languages in such a form that a compiler can detect inconsistencies. It is therefore the key element
for reducing the number of errors in programs.

However, it also acts as a restriction. It is, for example, impossible to construct data structures
(arrays, trees) with different types of elements. In order to relax the rule of strictly static typing, the
notion of type extension was introduced in Oberon. It makes it possible to construct

return adr

return adr

return adr

SP

Q

P

P

 48

inhomogeneous data structures without abandoning type safety. The price is that the checking of
type consistency must in certain instances be deferred to run-time. Such checks are called type
tests. The challenge is to defer to run-time as few checks as possible and as many as needed.

The solution in Oberon is to introduce families of types, and compatibility among their members.
Their members are thus related, and a family forms a hierarchy. The principle idea is the following:
Any record type T0 can be extended into a new type T1 by additional record fields (attributes). T1 is
then called an extension of T0, which in turn is said to be T1’s base type. T1 is then type
compatible with T0, but not vice-versa. This property ensures that in many cases static type
checking is still possible. Furthermore, it turns out that run-time tests can be made very efficient,
thus minimizing the overhead for maintaining type safety.

For example, given the declarations
TYPE R0 = RECORD u, v: INTEGER END ;
 R1 = RECORD (R0) w: INTEGER END

we say that R1 is an extension of R0. R0 has the fields u and v, R1 has u, v, and w. The concept
becomes useful in combination with pointers. Let

TYPE P0 = POINTER TO R0;
 P1 = POINTER TO R1;
VAR p0: P0; p1: P1;

Now it is possible to assign p1 to p0 (because a P1 is always also a P0), but not p0 to p1, because
a P0 need not be a P1. This has the simple consequence that a variable of type P0 may well point
to an extension of R0. Therefore, data structures can be declared with a base type, say P0, as
common element type, but in fact they can individually differ, they can be any extension of the base
type.

Obviously, it must be possible to determine the actual, current type of an element even if the base
type is statically fixed. This is possible through a type test, syntactically a Boolean factor:

p0 IS P1 (short for p0^ IS R1)

Furthermore, we introduce the type guard. In the present example, the designator p0.w is illegal,
because there is no field w in a record of type R0, even if the current value of p0^ is a R1. As this
case occurs frequently, we introduce the short notation p0(P1).w, implying a test p0 IS P1 and an
abort if the test is not met.

It is important to mention that this technique also applies to formal variable parameters of record
type, as they also represent a pointer to the actual parameter. Its type may be any extension of the
type specified for the formal parameter in the procedure heading.

How are type test and type guard efficiently implemented? Our first observation is that they must
consist of a single comparison only, similar to index checks. This in turn implies that types must be
identified by a single word. The solution lies in using the unique address of the type descriptor of
the (record) type. Which data must this descriptor hold? Essentially, type descriptors (TD) must
identify the base types of a given type. Consider the following hierarchy:

TYPE T = RECORD … END ;
 T0 = RECORD (T) … END ; extension level 1
 T1 = RECORD (T) … END ; extension level 1
 T00 = RECORD (T0) … END ; extension level 2
 T01 = RECORD (T0) … END ; extension level 2
 T10 = RECORD (T1) … END ; extension level 2
 T11 = RECORD (T1) … END ; extension level 2

 49

Figure 12.8. A type hierarchy

In the symbol table, the field base refers to the ancestor of a given record type. Thus base of the
type representing T11 points to T1, etc. Run-time checks, however, must be fast, and hence cannot
proceed through chains of pointers. Instead, each TD contains an array with references to the
ancestor TDs (including itself). For the example above, the TDs are as follows:

TD(T) = [T]
TD(T0) = [T, T0]
TD(T1) = [T, T1]
TD(T00) = [T, T0, T00]
TD(T01) = [T, T0, T01]
TD(T10) = [T, T1, T10]
TD(T11) = [T, T1, T11]

Evidently, the first element can be omitted, as it always refers to the common base of the type
hierarchy. The last element always points to the TD’s owner. TDs are allocated in the data area, the
area for variables.

References to TDs are called type tags. They are required in two cases. The first is for records
referenced by pointers. Such dynamically allocated records carry an additional, hidden field holding
their type tag. (A second additional word is reserved for use by the garbage collector. The offset of
the tag field is therefore -8). The second case is that of record-typed VAR-parameters. In this case
the type tag is explicitly passed along with the address of the actual parameter. Such parameters
therefore require two words/registers.

A type test then consists of a test for equality of two type tags. In p IS T the first tag is that of the
n’th entry of the TD of p^, where n is the extension level of T. The second tag is that of type T. This
is shown in Pattern13 in Section 12.2 (see also Fig. 12.4). The test then is as follows:

p^.tag^[n] = adr(T), where n is the extension level of T

When declaring a record type, it is not known how many extensions, nor how many levels will be
built on this type. Therefore TD’s should actually be infinite arrays. We decided to restrict them to 3
levels only. The first entry, which is never used for checking, is replaced by the size of the record.

12.7.9. Import and export, global variables

Addresses of imported objects are not available to the compiler. Their computation must be left to
the module loader (see Chapter 6). Similar to handling addresses of forward jumps, the compiler
puts the necessary information in place of the actual address into the instruction itself. In the case
of procedure calls, this is quite feasible, because the BL instruction features an offset field of 24
bits. The information consists of the module number and the export number of the imported object.
In addition, there is a link to the previous instruction referring to an imported procedure. The origin
of the list of procedure call fixups is rooted in the compiler variable fixorgP, and of the 24 bits in
each BL instruction 4 bits are used for the module number, 8 bits for the object's export number,
and 12 for the link. The loader need only scan this list to fix up the addresses (jump offsets).

Matters are more complex in the case of data. Object records in the symbol table have a field lev. It
indicates the nesting level of variables local to procedures. It is also used for the module number in
the case of variables of imported modules. Note that when importing, objects designating modules
are inserted in the symbol table, and the list of their own objects are attached in the field dsc. In this

T

T0 T1

T00 T01 T10 T11

base

 50

latter case, the module numbers have an inverted sign (are negative). Such imported objects are
static, i.e. have a fixed address. In principle their absolute address could be computed (fixed) by the
module loader. However, this is not practicable, because RISC instructions have an address offset
of 16 bits only. It is therefore necessary in the general case to use a base address in conjunction
with the offset. We use a single register for holding the static base (SB, R13). This register need be
reloaded for every access to an imported variable. However, the compiler keeps track of external
accesses; if a variable is to be accessed from the same module as the previous case, then
reloading is avoided (see procedure GetSB and global compiler variable curSB).

This base address is fetched from a table global to the entire system. This module table contains
one entry for every module loaded, namely the address of the module's data section. The address
of the table is permanently in register MT (= R12). An access to an imported variable therefore
always requires two instructions:

LDR SB, MT, modno*4 base address of data section
LDR R0, SB, offset offset computed by the loader from object's export number

Considering the fact that references to external variables are (or should be) rare, this circumstance
is of no great concern. (Note also that such accesses are read-only). More severe is the fact that
we also treat global variables contained in the same module by the same technique. Their level
number is 0. One might use a specific base register for the base of the current module. Its content
would then have to be reloaded upon every procedure call and after every return. This is common
technique, but we have here chosen to reload only when necessary, i.e. only when an access is at
hand. This strategy rewards the programmer who sensibly uses global variables rarely.

12.7.10. Traps

This compiler provides an extensive system of safeguard by providing run-time checks (aborts) in
several cases:

trap number trap cause

1 array index out of range
2 type guard failure
3 array or string copy overflow
4 access via NIL pointer
5 illegal procedure call
6 integer division by zero
7 assertion violated

These checks are implemented very efficiently in order not to downgrade a program's performance.
Involved is typically a single compare instruction, plus a conditional branch (BLR MT). It is assumed
that entry 0 of the module table contain not a base address (module numbers start with 1), but a
branch instruction to an appropriate trap routine. The trap number is encoded in bits 4:7 of the
branch instruction.

The predefined procedure Assert generates a conditional trap with trap number 7. For example, the
statement Assert(m = n) generates

LDR R0, m
LDR R1, n
CMP R0, R0, R1
BLR 1, 7CH branch and link if unequal through R12, trap number 7

Procedure New, representing the operator NEW, has been implemented with the aid of the trap
mechanism. (This is in order to omit in ORG any reference to module Kernel, which contains the
allocation procedure New). The generated code for the statement NEW(p) is

ADD R0, SP, p address of p
ADD R1,SB, tag type tag
BLR 7, 0CH branch and link unconditionally through R12 (MT), trap number 0

 51

13 A graphics editor

13.1. History and goal
The origin of graphics systems as they are in use at this time was intimately tied to the advent of the
high-resolution bit-mapped display and of the mouse as pointing device. The author's first contact
with such equipment dates back to 1976. The Alto computer at the Xerox Palo Alto Research Center
is justly termed the first workstation featuring those characteristics. The designer of its first graphics
package was Ch. Thacker who perceived the usefulness of the high-resolution screen for drawing
and processing schematics of electronic circuits. This system was cleverly tailored to the needs
encountered in this activity, and it was remarkable in its compactness and effectiveness due to the
lack of unnecessary facilities. Indeed, its acronym was SIL, for Simple ILlustrator.

After careful study of the used techniques, the author designed a variant, programmed in Modula-2
(instead of BCPL) for the PDP-11 Computer, thereby ordering and exhibiting the involved data
structures more explicitly. In intervals of about two years, that system was revised and grew
gradually into the present Draw system. The general goal remained a simple line drawing system:
emphasis was placed on a clear structure and increase of flexibility through generalization of existing
rather than indiscriminate addition of new features.

In the history of this evolution, three major transitions can be observed. The first was the move from
a single "window", the screen, to multiple windows including windows showing different excerpts of
the same graphic. This step was performed on the Lilith computer which resembled the Alto in many
ways. The second major transition was the application of the object-oriented style of programming,
which allowed the addition of new element types to the basic system, making it extensible. The third
step concerned the proper integration of the Draw system with Oberon's text system. The last two
steps were performed using Oberon and the Ceres computer.

We refrain from exhibiting this evolution and merely present the outcome, although the history might
be an interesting reflection of the evolution of programming techniques in general, containing many
useful lessons. We stress the fact, however, that the present system rests on a long history of
development, during which many features and techniques were introduced and later discarded or
revised. The size of the system's description is a poor measure of the effort that went into its
construction; deletion of program text sometimes marks bigger progress than addition.

The goal of the original SIL program was to support the design of electronic circuit diagrams.
Primarily, SIL was a line drawing system. This implies that the drawings remain uninterpreted.
However, in a properly integrated system, the addition of modules containing operators that interpret
the drawings is a reasonably straight-forward proposition. In fact, the Oberon system is ideally suited
for such steps, particularly due to its command facility.

At first, we shall ignore features specially tailored to circuit design. The primary one is a macro facility
to be discussed in a later chapter.

The basic system consists of the modules Draw, GraphicFrames, and Graphics. These modules
contain the facilities to generate and handle horizontal and vertical lines, text captions, and macros.
Additional modules serve to introduce other elements, such as rectangles and circles, and the
system is extensible, i.e. further modules may be introduced to handle further types of elements.

13.2. A brief guide to Oberon's line drawing system
In order to provide the necessary background for the subsequent description of the Draw system's
implementation, a brief overview is provided in the style of a user's guide. It summarizes the facilities
offered by the system and gives an impression of its versatility.

The system called Draw serves to prepare line drawings. They contain lines, text captions, and other
items, and are displayed in graphic viewers (more precisely: in menu viewers' graphic frames). A

 52

graphic viewer shows an excerpt of the drawing plane, and several viewers may show different parts
of a drawing. The most frequently used commands are built-in as mouse clicks and combinations of
clicks. Additional commands are selectable from texts, either in viewer menus (title bars) or in the
text called Draw.Tool. Fig. 13.1. shows the display with two graphic viewers at the left and the draw
tool text at the right. The mouse buttons have the following principal functions whenever the cursor
lies in a graphic frame:

left: draw / set caret
middle: move / copy
right: select

A mouse command is identified (1) by the key k0 pressed initially, (2) by the initial position P0 of the
cursor, (3) by the set of pressed keys k1 until the last one is released, and (4) the cursor position P1
at the time of release.

13.2.1. Basic commands

The command Draw.Open opens a new viewer and displays the graph with the name given as
parameter. We suggest that file names use the extension Graph.

Drawing a line. In order to draw a horizontal or vertical line from P0 to P1, the left key is pressed with
the cursor at P0 and, while the key is held, the mouse and cursor is moved to P1. Then the key is
released. If P0 and P1 differ in both their x and y coordinates, the end point is adjusted so that the
line is either horizontal or vertical.

Writing a caption. First the cursor is positioned where the caption is to appear. Then the left key is
clicked, causing a crosshair to appear. It is called the caret. Then the text is typed. Only single lines
of texts are accepted. The DEL key may be used to retract characters (backspace).

Selecting. Most commands require the specification of operands, and many implicitly assume the
previously selected elements - the selection - to be their operands. A single element is selected by
pointing at it with the cursor and then clicking the right mouse button. This also causes previously
selected elements to be deselected. If the left key is also clicked, their selection is retained. This
action is called an interclick. To select several elements at once, the cursor is moved from P0 to P1
while the right key is held. Then all elements lying within the rectangle with diagonally opposite
corners at P0 and P1 are selected. Selected lines are displayed as dotted lines, selected captions
(and macros) by inverse video mode. A macro is selected by pointing at its lower left corner. The
corner is called sensitive area.

Moving. To move (displace) a set of elements, the elements are first selected and then the cursor is
moved from P0 to P1 while the middle key is held. The vector from P0 to P1 specifies the movement
and is called the displacement vector. P0 and P1 may lie in different viewers displaying the same
graph. Small displacements may be achieved by using the keyboard's cursor keys.

Copying. Similarly, the selected elements may be copied (duplicated). In addition to pressing the
middle key while indicating the displacement vector, the left key is interclicked. The copy command
may also be used to copy elements from one graph into another graph by moving the cursor from
one viewer into another viewer displaying the destination graph. A text caption may be copied from a
text frame into a graphic frame and vice-versa. There exist two ways to accomplish this: 1. First the
caret is placed at the destination position, then the text is selected and the middle key is interclicked.
2. First the text is selected, then the caret is placed at the destination position and the middle key is
interclicked.

Shifting the plane. You may shift the entire drawing plane behind the viewer by specifying a
displacement vector pressing the middle button (like in a move command) and interclicking the right
button.

The following table shows a summary of the mouse actions:

left draw line
left (no motion) set caret

 53

left + middle copy selected caption to caret
left + right set secondary caret

middle move selection
middle + left copy selection
middle + right shift drawing plane

right select area
right (no motion) select object
right + middle copy caption to caret
right + left select without deselection

13.2.2. Menu commands

The following commands are displayed in the menu (title bar) of every graphic viewer. They are
activated by being pointed at and by clicking the middle button.

Draw.Delete The selected elements are deleted.
Draw.Store The drawing is written as file with the name shown in the title bar.
 The original file is renamed by appending ".Bak".
Draw.Restore The entire frame is redrawn
Draw.Ticks The frame displays a pattern of dots (ticks) to facilitate positioning.

The two viewers in Fig. 13.1. display different parts of the same graphic. The second view was
obtained from the generic System.Copy command and a subsequent shift of the drawing plane.

Figure 13.1 Display with graphics duplicated viewers

13.2.3. Further commands

The following commands are listed in the text Draw.Tool, but may appear in any text.

Draw.Store name The drawing in the marked viewer is stored as a file with the specified name.

 54

The subsequent commands change attributes of drawing elements, such as line width, text font, and
color, and they apply to the most recent selection.

Draw.SetWidth w default = 1, 0 < w < 7.
Draw.ChangeFont fontname
Draw.ChangeColor c
Draw.ChangeWidth w (0 < w < 7)

The ChangeColor command either take a color number in the range 1 .. 15 or a string as parameter.
It serves to copy the color from the selected character.

13.2.4. Macros

A macro is a (small) drawing that can be identified as a whole and be used as an element within a
(larger) drawing. Macros are typically stored in collections called libraries, from where they can be
selected and copied individually.

Draw.Macro lib mac The macro mac is selected from the library named lib and inserted in the
drawing at the caret's position.

An example for the use of macros is drawing electronic circuit diagrams. The basic library file
containing frequently used TTL components is called TTL0.Lib, and a drawing showing its elements
is called TTL0.Graph (see Figure 13.2).

Figure 13.2 Viewer with circuit macros of TTL0 library

13.2.5. Rectangles

Rectangles can be created as individual elements. They are frequently used for framing sets of
elements. Rectangles consist of four lines which are selectable as a unit. The attribute commands
Draw.SetWidth, System.SetColor, Draw.ChangeWidth, and Draw.ChangeColor also apply to

 55

rectangles. Rectangles are selected by pointing at their lower left corner and are created by the
following steps:

1. The caret is placed where the lower left corner of the new rectangle is to lie.
2. A secondary caret is placed where the opposite corner is to lie (ML + MR).
3. The command Rectangles.Make is activated.

13.2.6. Oblique lines, circles, and ellipses

Further graphic elements are (oblique) lines, circles, and ellipses. The sensitive area of circles and
ellipses is at their lowest point. They are created by the following steps:

Lines: 1. The caret is placed where the starting point is to lie.
 2. A secondary caret is placed at the position of the end.
 3. The command Curves.MakeLine is activated.

Circles: 1. The caret is placed where the circle's center is to lie.
 2. A secondary caret is placed, its distance from the center specifying the radius.
 3.The command Curves.MakeCircle is activated.

Ellipses: 1. The caret is placed where the center is to lie.
 2. A second caret is placed. Its horizontal distance from the first caret specifies one axis.
 3. A third caret is placed. Its vertical distance from the first caret specifies the other axis.
 4. The command Curves.MakeEllipse is activated.

13.2.7. Spline curves

Spline curves are created by the following steps:

1. The caret is placed where the starting point is to lie.
2. Secondary carets are placed at the spline's fixed points (at most 20).
3. The command Splines.MakeOpen or Splines.MakeClosed is activated.

13.2.8. Constructing new macros

A new macro is constructed and inserted in the library lib under the name mac as follows:

1. All elements which belong to the new macro are selected.
2. The caret is placed at the lower left corner of the area to be spanned by the macro.
3. A secondary caret is placed at the upper right corner of the area to be spanned.
4. The command MacroTool.MakeMacro lib mac is activated.

An existing macro can be decomposed (opened) into its parts as follows:

1. The macro is selected.
2. The caret is placed at the position where the decomposition is to appear.
3. The command MacroTool.OpenMacro is activated.

The command MacroTool.StoreLibrary lib file stores the library lib on the specified file. Only the
macros presently loaded are considered as belonging to the library. If one wishes to add some
macros to an existing library file, all of its elements must first be loaded. This is best done by opening
a graph containing all macros of the desired library file.

13.3. The core and its structure
Like a text, a graphic consists of elements, subsequently to be called objects. Unlike a text, which is
a sequence of elements, a graphic is an unordered set of objects. In a text, the position of an
element need not be explicitly indicated (stored); it is recomputed from the position of its predecessor
each time it is needed, for example for displaying or selecting an element. In a graphic, each object
must carry its position explicitly, as it is independent of any other object in the set. This is an
essential difference, requiring a different treatment and much more storage space for an equal
number of objects.

 56

Although this is an important consideration in the choice of a representation of a data structure, the
primary determinants are the kind of objects to be included, and the set of operations to be applied to
them. Here SIL set a sensible starting point. To begin with, there exist only two kinds of objects,
namely straight, horizontal and vertical lines, and short texts for labelling lines, called captions. It is
surprising how many useful task can be fulfilled with only these two types of objects.

The typical operations to be performed on objects are creating, drawing, moving, copying, and
erasing. Those performed on a graphic are inserting, searching, and deleting an object. For the
operations on objects, data indicating an object's position (and possibly color), its length and width in
the case of lines, and the character string in the case of captions suffice. For the operations on the
graphic, some data structure representing the set of objects must be chosen. Without question, a
dynamic structure is most appropriate, and it requires the addition of some linking fields to the record
representing an object. Without further deliberation, and with the idea that graphics to be handled
with this system contain hundreds rather than tens of thousands of objects, we chose the simplest
solution, the linear list. A proper modularization in connection with information hiding will make it
possible to alter this choice without affecting client modules.

Although in general the nature of a user interface should not influence the representation chosen for
the abstract data structure, we need to take note of the manner in which parameters of certain
operations are denoted. It is, for example, customary in interactive graphics systems to select the
objects to which an operation is to apply before invoking that operation. Their selection is reflected in
their visual appearance in some way, and gives the user an opportunity to verify the selection (and to
change it, if necessary) before applying the operation (such as deletion). For an object to be
selectable means that it must record a state (selected/unselected). We note that it is important that
this state is reflected by visual appearance.

As a consequence, the property selected is added to every object record. We now specify the data
types representing lines and captions as follows and note that both types must be extensions of the
same base type in order to be members of one and the same data structure.

TYPE Object = POINTER TO ObjectDesc;
 ObjectDesc = RECORD
 x, y, w, h, col: INTEGER;
 selected: BOOLEAN;
 next: Object
 END ;

 Line = POINTER TO LineDesc;
 LineDesc = RECORD (Object) END ;

 Caption = POINTER TO CaptionDesc
 CaptionDesc = RECORD (Object)
 pos, len: INTEGER
 END

Selection of a single element is typically achieved by pointing at the object with mouse and cursor.
Selection of a set of objects is achieved by specifying a rectangular area, implying selection of all
objects lying within it. In both cases, the search for selected elements proceeds through the linked
list and relies on the position and size stored in each object's descriptor. As a consequence, the rule
was adopted that every object not only specify a position through its coordinates x, y, but also the
rectangular area within which it lies (width w, height h). It is thus easy to determine whether a given
point identifies an object, as well as whether an object lies fully within a rectangular area.

In principle, each caption descriptor carries the sequence of characters (string) representing the
caption. The simplest realization would be an array structured field, limiting the length of captions to
some fixed, predetermined value. First, this is highly undesirable (although used in early versions of
the system). And second, texts carry attributes (color, font). It is therefore best to use a global
"scratch text", and to record a caption by the position and length of the string in this immutable text.

A procedure drawGraphic to draw all objects of a graphic now assumes the following form:

 57

PROCEDURE drawObj(obj: Object);
BEGIN
 IF obj IS Line THEN drawLine(obj(Line))
 ELSIF obj IS Caption THEN drawCaption(obj(Caption))
 ELSE (*other object types, if any*)
 END
END drawObj;

PROCEDRE drawGraphic(first: Object);
 VAR obj: Object;
BEGIN obj := first;
 WHILE obj # NIL DO drawObj(obj); obj := obj.next END
END drawGraphic

The two procedures typically are placed in different modules, one containing operations on objects,
the other those on graphics. Here the former is the service module, the latter the former's client.
Procedures for, e.g, copying elements, or determining whether an object is selectable, follow the
same pattern as drawGraphic.

This solution has the unpleasant property that all object types are anchored in the base module. If
any new types are to be added, the base module has to be modified (and all clients are to be - at
least - recompiled). The object-oriented paradigm eliminates this difficulty by inverting the roles of the
two modules. It rests on binding the operations pertaining to an object type to each object individually
in the form of procedure-typed record fields as shown in the following sample declaration:

ObjectDesc = RECORD
 x, y, w, h, col: INTEGER; selected: BOOLEAN;
 draw: PROCEDURE (obj: Object);
 write: PROCEDURE (obj: Object; VAR R: Files.Rider);
 next: Object
 END

The procedure drawGraphic is now formulated as follows:
PROCEDURE drawGraphic(first: Object);
 VAR obj : Object;
BEGIN obj := first;
 WHILE obj 9 NIL DO obj.draw(obj); obj := obj.next END
END drawGraphic;

The individual procedures - in object-oriented terminology called methods - are assigned to the
record's fields upon its creation. They need no further discrimination of types, as this role is assumed
by the assignment of the procedures upon their installation. We note here that the procedure fields
are never changed; they assume the role of constants rather than variables associated with each
object.

This example exhibits in a nutshell the essence of object-oriented programming, extensibility as its
purpose and the procedure-typed record field as the technique.

The given solution, as it stands, has the drawback that each object (instance, variable) contains
several procedures (of which three are listed), and therefore leads to a storage requirement that
should be avoided. Furthermore, it defines once and for all the number of operations applicable to
objects, and also their parameters and result types. A different approach with the same underlying
principle removes these drawbacks. It employs a single installed procedure which itself discriminates
among the operations according to different types of parameters. The parameters of the preceding
solution are merged into a single record called a message. The unified procedure is called a handler,
and messages are typically extensions of a single base type Msg.

TYPE Msg = RECORD END;
 DrawMsg = RECORD (Msg) END;
 WriteMsg = RECORD (Msg) R: Files.Rider END ;

 ObjectDesc = RECORD
 x, y, w, h, col: INTEGER; selected: BOOLEAN;

 58

 handle: PROCEDURE (obj: Object; VAR M: Msg);
 next: Object
 END ;

PROCEDURE Handler (obj: Object; VAR M: Msg);
 (*this procedure is assigned to the handle field of every line object*)
BEGIN
 IF M IS DrawMsg THEN drawLine(obj(Line))
 ELSIF M IS WriteMsg THEN writeLine(obj(Line), M(WriteMsg).R)
 ELSE ...
 END
END ;

PROCEDURE drawGraphic(first: Objec; VAR M: Msg);
 VAR obj: Object;
BEGIN obj := first;
 WHILE obj 9 NIL DO obj.handle(obj, M); obj := obj.next END
END drawGraphics

In the present system, a combination of the two schemes presented so far is used. It eliminates the
need for individual method fields in each object record as well as the cascaded IF statement for
discriminating among the message types. Yet it allows further addition of new methods for later
extensions without the need to change the object's declaration. The technique used is to include a
single field (called do) in each record (analogous to the handler). This field is a pointer to a method
record containing the procedures declared for the base type. At least one of them uses a message
parameter, i.e. a parameter of record structure that is extensible.

TYPE Method = POINTER TO MethodDesc;
 Msg = RECORD END;
 Context = RECORD END;

 Object = POINTER TO ObjectDesc;
 ObjectDesc = RECORD
 x, y, w, h, col: INTEGER; selected: BOOLEAN;
 do: Method; next: Object
 END;

MethodDesc = RECORD
 new: Modules.Command;
 copy: PROCEDURE (obj, to: Object);
 draw, handle: PROCEDURE (obj: Object; VAR M: Msg);
 selectable: PROCEDURE (obj: Object; x, y: INTEGER): BOOLEAN;
 read: PROCEDURE (obj: Object; VAR R: Files.Rider; VAR C: Context);
 write: PROCEDURE (obj: Object; cno: INTEGER;
 VAR R: Files.Rider; VAR C: Context);
 END

A single method instance is generated when a new object type is created, typically in the initialization
sequence of the concerned module. When a new object is created, a pointer to this record is
assigned to the do field of the new object descriptor. A call then has the form obj.do.write(obj, R).
This example exhibits the versatility of Oberon's type extension and procedure variable features very
well, and it does so without hiding the data structures involved in a dispensible, built-in run-time
mechanism.

The foregoing deliberations suggest the system's modular structure shown in Figure 13.3.:

 59

Figure 13.3 Clients of module Graphics

The modules in the top row implement the individual object types' methods, and additionally provide
commands, in particular Make for creating new objects. The base module specifies the base types
and procedures operating on graphics as a whole.

Our system, however, deviates from this scheme somewhat for several reasons:

1. Implementation of the few methods requires relatively short programs for the basic objects.
Although a sensible modularization is desirable, we wish to avoid an atomization, and therefore
merge parts that would result in tiny modules with the base module.

2. The elements of a graphic refer to fonts used in captions and to libraries used in macros. The
writing and reading procedures therefore carry a context consisting of fonts and libraries as an
additional parameter. Routines for mapping a font (library) to a number according to a given
context on output, and a number to a font (library) on input are contained in module Graphics.

3. In the design of the Oberon System, a hierarchy of four modules has proven to be most
appropriate:

0. Module with base type handling the abstract data structure.
1. Module containing procedures for the representation of objects in frames (display handling).
2. Module containing the primary command interpreter and connecting frames with a viewer.
3. A command module scanning command lines and invoking the appropriate interpreters.

The module hierarchy of the Graphics System is here shown together with its analogy, with the Text
System:

 Function Graphics Text

3. Command Scanner Draw Edit
2. Viewer Handler MenuViewers MenuViewers
1. Frame Handler GraphicFrames TextFrames
0. Base Graphics Texts

As a result, module Graphics does not only contain the base type Object, but also its extensions Line
and Caption (and Macro). Their methods are also defined in Graphics, with the exception of drawing
methods, which are defined in GraphicFrames, because they refer to frames.

So far, we have discussed operations on individual objects and the structure resulting from the desire
to be able to add new object types without affecting the base module. We now turn our attention
briefly to operations on graphics as a whole. They can be grouped into two kinds, namely operations
involving a graphic as a set, and those applying to the selection, i.e. to a subset only.

The former kind consists of procedures Add, which inserts a new object, Draw, which traverses the
set of objects and invokes their drawing methods, ThisObj, which searches for an object at a given
position, SelectObj, which marks an object to be selected, SelectArea, which identifies all objects
lying within a given rectangular area and marks them, Selectable, a Boolean function, and
Enumerate, which applies the parametric procedure handle to all objects of a graphic. Furthermore,
the procedures Load, Store, Print, and WriteFile belong to this kind.

Lines Captions Macros other classes

TYPE Object,
Graph, Method

Graphics

 60

The set of operations applying to selected objects only consist of the following procedures: Deselect,
DrawSel (drawing the selection according to a specified mode), Change (changing certain attributes
of selected objects like width, font, color), Move, Copy, CopyOver (copying from one graphic into
another), and finally Delete. Also, there exists the important procedure Open which creates a new
graphic, either loading a graphic stored as a file, or generating an empty graphic.

The declaration of types and procedures that have emerged so far are summarized in the following
excerpt of the module's interface definition.

DEFINITION Graphics; (*excerpt without macros*)
 IMPORT Files, Fonts, Texts, Modules, Display;

 CONST NameLen = 32;

 TYPE Graph = POINTER TO GraphDesc;
 Object = POINTER TO ObjectDesc;
 Method = POINTER TO MethodDesc;

 ObjectDesc = RECORD
 x, y, w, h: INTEGER;
 col: BYTE;
 selected, marked: BOOLEAN;
 do: Method
 END ;

 Msg = RECORD END ;
 WidMsg = RECORD (Msg) w: INTEGER END ;
 ColorMsg = RECORD (Msg) col: INTEGER END ;
 FontMsg = RECORD (Msg) fnt: Fonts.Font END ;
 Name = ARRAY NameLen OF CHAR;

 GraphDesc = RECORD sel: Object;
 time: INTEGER
 END ;

 Context = RECORD END ;

 MethodDesc = RECORD
 module, allocator: Name;
 new: Modules.Command;
 copy: PROCEDURE (obj, to: Object);
 draw, change: PROCEDURE (obj: Object; VAR msg: Msg);
 selectable: PROCEDURE (obj: Object; x, y: INTEGER): BOOLEAN;
 read: PROCEDURE (obj: Object; VAR R: Files.Rider; VAR C: Context);
 write: PROCEDURE (obj: Object; cno: INTEGER; VAR R: Files.Rider; VAR C: Context);
 END ;

 Line = POINTER TO LineDesc;
 LineDesc = RECORD (ObjectDesc) END ;

 Caption = POINTER TO CaptionDesc;
 CaptionDesc = RECORD (ObjectDesc) pos, len: INTEGER END ;

 VAR width, res: INTEGER;
 T: Texts.Text;
 LineMethod, CapMethod, MacMethod: Method;

 PROCEDURE New(obj: Object);
 PROCEDURE Add (G: Graph; obj: Object);
 PROCEDURE Draw (G: Graph; VAR M: Msg);
 PROCEDURE ThisObj (G: Graph; x, y: INTEGER): Object;
 PROCEDURE SelectObj (G: Graph; obj: Object);
 PROCEDURE SelectArea (G: Graph; x0, y0, x1, y1: INTEGER);

 PROCEDURE Deselect (G: Graph);
 PROCEDURE DrawSel (G: Graph; VAR M: Msg);

 61

 PROCEDURE Change (G: Graph; VAR M: Msg);
 PROCEDURE Move (G: Graph; dx, dy: INTEGER);
 PROCEDURE Copy (Gs, Gd: Graph; dx, dy: INTEGER);
 PROCEDURE Delete (G: Graph);

 PROCEDURE FontNo (VAR W: Files.Rider; VAR C: Context; fnt: Fonts.Font): INTEGER;
 PROCEDURE WriteObj (VAR W: Files.Rider; cno: INTEGER; obj: Object);
 PROCEDURE Store (G: Graph; VAR W: Files.Rider);
 PROCEDURE WriteFile (G: Graph; name: ARRAY OF CHAR);
 PROCEDURE Font (VAR R: Files.Rider; VAR C: Context): Fonts.Font;
 PROCEDURE Load (G: Graph; VAR R: Files.Rider);
 PROCEDURE Open (G: Graph; name: ARRAY OF CHAR);
END Graphics.

13.4. Displaying graphics
The base module Graphics defines the representation of a set of objects in terms of a data structure.
The particulars are hidden and allow the change of structural representation by an exchange of this
module without affecting its clients. The problems of displaying a graphic on a screen or a printed
page are not handled by this module; they are delegated to the client module GraphicFrames, which
defines a frame type for graphics which is an extension of Display.Frame, just like
TextFrames.Frame is an extension of Display.Frame. In contrast to text frames, however, a graphic
instead of a text is associate with it.

FrameDesc = RECORD (Display.FrameDesc)
 graph: Graphics.Graph;
 Xg, Yg, X1, Y1, x, y, col: INTEGER;
 marked, ticked: BOOLEAN;
 mark: LocDesc
 END

Every frame specifies its coordinates X, Y within the display area, its size by the attributes W (width)
and H (height), and its background color col. Just as a frame represents a (rectangular) section of
the entire screen, it also shows an excerpt of the drawing plane of the graphic. The coordinate origin
need coincide with neither the frame origin nor the display origin. The frame's position relative to the
graphic plane's origin is recorded in the frame descriptor by the coordinates Xg, Yg.

The additional, redundant attributes x, y, X1, Y1 are given by the following invariants, and they are
recorded in order to avoid their frequent recomputation.

X1 = X + W, Y1 = Y + H
x = X + Xg, y = Y1 + Yg

X and Y (and hence also X1 and Y1) are changed when a viewer is modified, i.e. when the frame is
moved or resized. Xg and Yg are changed when the graph's origin is moved within a frame. The
meaning of the various values is illustrated in Figure 13.4.

 62

Figure 13.4 Frame and graph coordinates

As a consequence, the display coordinates u, v of an object z of a graph displayed in a frame f are
computed as

u = z.x + f.x, v = z.y + f.y

In order to determine whether an object z lies within a frame f, the following expression must hold:

(f.X <= u) & (u + z.w <= f.X1) & (f.Y <= v) & (v + z.h <= f.Y1)

The record field marked indicates whether or not the frame contains a caret. Its display position is
recorded in the field called mark. A frame may contain several (secondary) carets; they form a list of
location descriptors.

When an object is displayed (drawn), its state must be taken into consideration in order to provide
visible user feedback. The manner in which selection is indicated, however, may vary among
different object types. This can easily be realized, because every object (type) is associated with an
individual drawing procedure. The following visualizations of selection have been chosen:

Selected lines are shown in a grey tone (raster pattern).
Selected captions are shown with "inverse video".

Change of state is a relatively frequent operation, and if possible a complete repainting of the
involved objects should be avoided for reasons of efficiency. Therefore, procedures for drawing an
object are given a mode parameter, in addition to the obvious object and frame parameters. The
parameters are combined into the message record of type DrawMsg.

DrawMsg = RECORD (Graphics.Msg)
 f: Frame;
 mode, x, y, col: INTEGER
 END

The meaning of the mode parameter's four possible values are the following:

mode = 0: draw object according to its state,
mode = 1: draw reflecting a transition from normal to selected state,
mode = 2: draw reflecting a transition from selected to normal state,
mode = 3: erase.

In the case of captions, for instance, the transitions are indicated by simply inverting the rectangular
area covered by the caption. No rewriting of the captions' character patterns is required.

Graph origin

Frame origin

Display origin

x, y

X, Y

X1, Y1

Xg, Yg

 63

A mode parameter is also necessary for reflecting object deletion. First, the selected objects are
drawn with mode indicating erasure. Only afterwards are they removed from the graphic's linked list.

Furthermore, the message parameter of the drawing procedure contains two offsets x and y. They
are added to the object's coordinates, and their significance will become apparent in connection with
macros. The same holds for the color parameter.

The drawing procedures are fairly straight-forward and use the four basic raster operations of module
Display. The only complication arises from the need to clip the drawing at the frame boundaries. In
the case of captions, a character is drawn only if it fits into the frame in its entirety. The raster
operations do not test (again) whether the indicated position is valid.

At this point we recall that copies of a viewer (and its frames) can be generated by the System.Copy
command. Such copies display the same graphic, but possibly different excerpts of them. When a
graphic is changed by an insertion, deletion, or any other operation, at a place that is visible in
several frames, all affected views must reflect the change. A direct call to a drawing procedure
indicating a frame and the change does therefore not suffice. Here again, the object-oriented style
solves the problem neatly: In place of a direct call a message is broadcast to all frames, the message
specifying the nature of the required updates.

The broadcast is performed by the general procedure Viewers.Broadcast(M). It invokes the handlers
of all viewers with the parameter M. The viewer handlers either interpret the message or propagate it
to the handlers of their subframes. Procedure obj.handle is called with a control message as
parameter when pointing at the object and clicking the middle mouse button. This allows control to
be passed to the handler of an individual object.

The definition of module GraphicFrames is summarized by the following interface:
DEFINITION GraphicFrames;
 IMPORT Display, Graphics;

 TYPE Frame = POINTER TO FrameDesc;
 Location = POINTER TO LocDesc;

 LocDesc = RECORD
 x, y: INTEGER;
 next: Location
 END ;

 FrameDesc = RECORD (Display.FrameDesc)
 graph: Graphics.Graph;
 Xg, Yg, X1, Y1, x, y, col: INTEGER;
 marked, ticked: BOOLEAN;
 mark: LocDesc
 END ;

 (*mode = 0: draw according to selected, 1: normal -> selected, 2: selected -> normal, 3: erase*)

 DrawMsg = RECORD (Graphics.Msg)
 f: Frame;
 x, y, col, mode: INTEGER
 END ;

 PROCEDURE Restore (F: Frame);
 PROCEDURE Focus (): Frame;
 PROCEDURE Selected (): Frame;
 PROCEDURE This(x, y: INTEGER): Frame;
 PROCEDURE Draw (F: Frame);
 PROCEDURE Erase (F: Frame);
 PROCEDURE DrawObj (F: Frame; obj: Graphics.Object);
 PROCEDURE EraseObj (F: Frame; obj: Graphics.Object);
 PROCEDURE Change (F: Frame; VAR msg: Graphics.Msg);
 PROCEDURE Defocus (F: Frame);
 PROCEDURE Deselect (F: Frame);
 PROCEDURE Macro (VAR Lname, Mname: ARRAY OF CHAR);

 64

 PROCEDURE Open (G: Frame; graph: Graphics.Graph);
END GraphicFrames.

Focus and Selected identify the graphic frame containing the caret, or containing the latest selection.
Draw, Erase, and Handle apply to the selection of the specified frame's graphic. And Open
generates a frame displaying the specified graphic.

13.5. The user interface
Although the display is the prime constituent of the interface between the computer and its user, we
chose the title of this chapter for a presentation primarily focussed on the computer's input, i.e. on its
actions instigated by the user's handling of keyboard and mouse, the editing operations. The design
of the user interface plays a decisive role in a system's acceptance by users. There is no fixed set of
rules which determine the optimal choice of an interface. Many issues are a matter of subjective
judgement, and all too often convention is being mixed up with convenience. Nevertheless, a few
criteria have emerged as fairly generally accepted.

We base our discussion on the premise that input is provided by a keyboard and a mouse, and that
keyboard input is essentially to be reserved for textual input. The critical issue is that a mouse - apart
from providing a cursor position - allows to signal actions by the state of its keys. Typically, there are
far more actions than there are keys. Some mice feature a single key only, a situation that we deem
highly unfortunate. There are, however, several ways to "enrich" key states:

1. Position. Key states are interpreted depending on the current position of the mouse represented
by the cursor. Typically, interpretation occurs by the handler installed in the viewer covering the
cursor position, and different handlers are associated with different viewer types. The handler
chosen for interpretation may even be associated with an individual (graphic) object and depend
on that object's type.

2. Multiple clicks. Interpretation may depend on the number of repeated clicks (of the same key),
and/or on the duration of clicks.

3. Interclicks. Interpretation may depend on the combination of keys depressed until the last one is
released. This method is obviously inapplicable for single-key mice.

Apart from position dependence, we have quite successfully used interclicks. A ground rule to be
observed is that frequent actions should be triggered by single-key clicks, and only variants of them
should be signalled by interclicks. The essential art is to avoid overloading this method.

Less frequent operations may as well be triggered by textual commands, i.e. by pointing at the
command word and clicking the middle button. Even for this kind of activation, Oberon offers two
variations:

1. The command is listed in a menu (title bar). This solution is favoured when the respective viewer is
itself a parameter to the command, and it is recommended when the command is reasonably
frequent, because the necessary mouse movement is relatively short.

2. The command lies elsewhere, typically in a viewer containing a tool text.

Lastly, we note that any package such as Draw is integrated within an entire system together with
other packages. Hence it is important that the rules governing the user interfaces of the various
packages do not differ unnecessarily, but that they display common ground rules and a common
design "philosophy". Draw's conventions were, as far as possible and sensible, adapted to those of
the text system. The right key serves for selection, the left for setting the caret, and the middle key
for activating general commands, in this case moving and copying the entire graphic. Inherently,
drawing involves certain commands that cannot be dealt with in the same way as for texts. A
character is created by typing on the keyboard; a line is created by dragging the mouse while holding
the left key. Interclicks left-middle and right-middle are treated in the same way as in the text system
(copying a caption from the selection to the caret), and this is not surprising, because text and
graphics are properly integrated, i.e. captions can be copied from texts into graphics and vice-versa.

 65

Using different conventions depending on whether the command was activated by pointing at the
caption within a text frame or within a graphics frame would be confusing indeed.

13.6. Macros
For many applications it is indispensible that certain sets of objects may be named and used as
objects themselves. Such a named subgraph is called a macro. A macro thus closely mirrors the
sequence of statements in a program text that is given a name and can be referenced from within
other statements: the procedure. The notion of a graphic object becomes recursive, too. The facility
of recursive objects is so fundamental that it was incorporated in the base module Graphics as the
third class of objects.

Its representation is straight-forward: in addition to the attributes common to all objects, a field is
provided storing the head of the list of elements which constitute the macro. In the present system, a
special node is introduced representing the head of the element list. It is of type MacHeadDesc and
carries also the name of the macro and the width and height of the rectangle covering all elements.
These values serve to speed up the selection process, avoiding their recomputation by scanning the
entire element list.

The recursive nature of macros manifests itself in recursive calls of display procedures. In order to
draw a macro, drawing procedures of the macro's element types are called (which may be macros
again). The coordinates of the macro are added to the coordinates of each element, which function
as offsets. The color value of the macro, also a field of the parameter of type DrawMsg, overrides the
colors of the elements. This implies that macros always appear monochrome.

An application of the macro facility is the design of schematics of electronic circuits. Circuit
components correspond to macros. Most components are represented by a rectangular frame and
by labelled connectors (pins). Some of the most elementary components, such as gates, diodes,
transistors, resistors, and capacitors are represented by standardized symbols. Such symbols, which
may be regarded as forming an alphabet of electronic circuit diagrams, are appropriately provided in
the form of a special font, i.e. a collection of raster patterns. Three such macros are shown in Figure
13.5, together with the components from which they are assembled. The definitions of the data types
involved are:

Macro = POINTER TO MacroDesc;
MacroDesc = RECORD (ObjectDesc) mac: MacHead END ;

MacHead = POINTER TO MacHeadDesc;
MacHeadDesc = RECORD name: Name;
 w, h: INTEGER; lib: Library
 END ;

Library = POINTER TO LibraryDesc;
LibraryDesc = RECORD name: Name END

Procedure DrawMac(mh, M) displays the macro with head mh according to the draw message
parameter M which specifies a frame, a position within the frame, a display mode, and an overriding
color.

In the great majority of applications, macros are not created by their user, but are rather provided
from another source, in the case of electronic circuits typically by the manufacturer of the
components represented by the macros. As a consequence, macros are taken from a collection
(inappropriately) called a library. In our system, a macro is picked from such a collection by the
command Draw.Macro with a library name and a macro name as parameters. It inserts the specified
macro at the place of the caret by calling GraphicFrames.Macro, which in turn calls Graphics.Add.

At last, we mention that selection of a macro is visualized by covering with a dot pattern the entire
rectangular area occupied by the macro. This emphasizes the fact that the macro constitutes an
object as a whole.

 66

The design of new macros is a relatively rare activity. Macros are used rather like characters of a
font; the design of new macros and fonts is left to the specialist. Nevertheless, it was decided to
incorporate the ingredients necessary for macro design in the basic system. They consist of a few
procedures only which are used by a tool module called MacroTool (see Section 16.3).

MakeMac integrates all elements lying within a specified rectangular area into a new macro.
OpenMac reverses this process by disintegrating the macro into its parts. InsertMac inserts a
specified macro into a library. NewLib creates a new, empty library, and StoreLib generates a library
file containing all macros currently loaded into the specified library. The details of these operations
may be examined in the program listings provided later in this Chapter. Summarizing, the following
procedures are exported from module Graphics related to handling macros:

PROCEDURE GetLib(name: ARRAY OF CHAR; replace: BOOLEAN; VAR Lib: Library);
PROCEDURE ThisMac(L: Library; Mname: ARRAY OF CHAR): MacHead;
PROCEDURE DrawMac(mh: MacHead; VAR M: Msg);

and the following are added for creating new macros and libraries:
PROCEDURE NewLib(Lname: ARRAY OF CHAR): Library;
PROCEDURE StoreLib(L: Library; Fname: ARRAY OF CHAR);
PROCEDURE RemoveLibraries;
PROCEDURE OpenMac(mh: MacHead; G: Graph; x, y: INTEGER);
PROCEDURE MakeMac(G: Graph; x, y, w, h: INTEGER; Mname: ARRAY OF CHAR): MacHead;
PROCEDURE InsertMac(mh: MacHead; L: Library; VAR new: BOOLEAN);

13. 7. Object classes
Although surprisingly many applications can be covered satisfactorily with the few types of objects
and the few facilities described so far, it is nevertheless expected that a modern graphics system
allow the addition of further types of objects. The emphasis lies here on the word addition instead of
change. New facilities are to be providable by the inclusion of new modules without requiring any
kind of adjustment, not even recompilation of the existing modules. In practice, their source code
would quite likely not be available. It is the triumph of the object-oriented programming technique that
this is elegantly possible. The means are the extensible record type and the procedure variable,
features of the programming language, and the possibility to load modules on demand from
statements within a program, a facility provided by the operating environment.

We call, informally, any extension of the type Object a class. Hence, the types Line, Caption, and
Macro constitute classes. Additional classes can be defined in other modules importing the type
Object. In every such case, a set of methods must be declared and assigned to a variable of type
MethodDesc. They form a so-called method suite. Every such module must also contain a
procedure, typically a command, to generate a new instance of the new class. This command, likely
to be called Make, assigns the method suite to the do field of the new object.

This successful decoupling of additions from the system's base suffices, almost. Only one further link
is unavoidable: When a new graphic, containing objects of a class not defined in the system's core,
is loaded from a file, then that class must be identified, the corresponding module with its handlers
must be loaded - this is called dynamic loading - and the object must be generated (allocated).
Because the object in question does not already exist at the time when reading the object's attribute
values, the generating procedure cannot possibly be installed in the very same object, i.e. it cannot
be a member of the method suite. We have chosen the following solution to this problem:

1. Every new class is implemented in the form of a module, and every class is identified by the
module name. Every such module contains a command whose effect is to allocate an object of the
class, to assign the message suite to it, and to assign the object to the global variable
Graphics.new.

2. When a graphics file is read, the class of each object is identified and a call to the respective
module's allocation procedure delivers the desired object. The call consists of two parts: a call to
Modules.ThisMod, which may cause the loading of the respctive class module M, and a call of

 67

Modules.ThisCommand. Then the data of the base type Object are read, and lastly the data of the
extension are read by a call to the class method read.

The following may serve as a template for any module defining a new object class X. Two examples
are given in Section 13.9, namely Rectangles and Curves.

MODULE Xs;
 IMPORT Files, Oberon, Graphics, GraphicFrames;

 TYPE X* = POINTER TO XDesc;
 XDesc = RECORD (Graphics.ObjectDesc) (*additional data fields*) END ;

 VAR method: Graphics.Method;

 PROCEDURE New*;
 VAR x: X;
 BEGIN NEW(x); x.do := method; Graphics.new := x
 END New;

 PROCEDURE* Copy(obj, to: Graphics.Object);
 BEGIN to(X)^ := obj(X)^
 END Copy;

 PROCEDURE* Draw(obj: Graphics.Object; VAR msg: Graphics.Msg);
 BEGIN ...
 END Draw;

 PROCEDURE* Selectable(obj: Graphics.Object; x, y: INTEGER): BOOLEAN;
 BEGIN ...
 END Selectable;

 PROCEDURE* Change(obj: Graphics.Object; VAR msg: Graphics.Msg);
 BEGIN
 IF msg IS Graphics.ColorMsg THEN obj.col := msg(Graphics.ColorMsg).col
 ELSIF msg IS ... THEN ...
 END
 END Handle;

 PROCEDURE* Read(obj: Graphics.Object; VAR W: Files.Rider; VAR C: Context);
 BEGIN (*read X-specific data*)
 END Write;

 PROCEDURE* Write(obj: Graphics.Object; cno: SHORTINT;
 VAR W: Files.Rider; VAR C: Context);
 BEGIN Graphics.WriteObj(W, cno, obj); (*write X-specific data*)
 END Write;

 PROCEDURE Make*; (*command*)
 VAR x: X; F: GraphicFrames.Frame;
 BEGIN F := GraphicFrames.Focus();
 IF F # NIL THEN
 GraphicFrames.Deselect(F);
 NEW(x); x.x := F.mark.x - F.x; x.y := F.mark.y - F.y; x.w := ... ; x.h := ... ;
 x.col := Oberon.CurCol; x.do := method;
 GraphicFrames.Defocus(F); Graphics.Add(F.graph, x); GraphicFrames.DrawObj(F, x)
 END
 END Make;

BEGIN NEW(method); method.module := "Xs"; method.allocator := "New";
 method.copy := Copy; method.draw := Draw; method.selectable := Selectable;
 method.handle := Handle; method.read := Read; method.write := Write; method.print := Print
END Xs.

We wish to point out that also the macro and library facilities are capable of integrating objects of
new classes, i.e. of types not occurring in the declarations of macro and library facilities. The
complete interface definition of module Graphics is obtained from its excerpt given in Sect. 13.3,
augmented by the declarations of types and procedures in Sect. 13.6. and 13.7.

 68

13.8. The implementation

13.8.1. Module Draw
Module Draw is a typical command module whose exported procedures are listed in a tool text. Its
task is to scan the text containing the command for parameters, to check their validity, and to
activate the corresponding procedures, which primarily are contained in modules Graphics and
GraphicFrames. The most prominent among them is the Open command. It generates a new viewer
containing two frames, namely a text frame serving as menu, and a graphic frame.

We emphasize at this point that graphic frames may be opened and manipulated also by other
modules apart from Draw. In particular, document editors that integrate texts and graphics - and
perhaps also other entities - would refer to Graphics and GraphicFrames directly, but not make use
of Draw which, as a tool module, should not have client modules.

DEFINITION Draw;
 PROCEDURE Open;
 PROCEDURE Delete;
 PROCEDURE SetWidth;
 PROCEDURE ChangeColor;
 PROCEDURE Store;
 PROCEDURE Macro;

 PROCEDURE OpenMacro;
 PROCEDURE MakeMacro;
 PROCEDURE LoadLibrary;
END Draw.

13.8.2. Module GraphicFrames
Module GraphicFrames contains all routines concerned with displaying, visualizing graphic frames
and their contents, i.e. graphics. It also contains the routines for creating new objects of the base
classes, i.e. lines, captions, and macros. And most importantly, it specifies the appropriate frame
handler which interprets input actions and thereby defines the user interface. The handler
discriminates among the following message types:

1. Update messages. According to the id field of the message record, either a specific object or the
entire selection of a graphic are drawn according to a mode. The case id = 0 signifies a restoration
of the entire frame including all objects of the graphic.

2. Selection, focus, and position queries. They serve for the identification of the graphic frame
containing the latest selection, containing the caret (mark) or the indicated position. In order to
identify the latest selection, the time is recorded in the graph descriptor whenever a new selection
is made or when new objects are inserted.

3. Input messages. They originate from the central loop of module Oberon and indicate either a
mouse action (track message) or a keyboard event (consume message).

4. Control messages from Oberon. They indicate that all marks (selection, caret, star) are to be
removed (neutralize), or that the focus has to be relinquished (defocus).

5. Selection and copy messages from Oberon. They constitute the interface between the graphics
and the text system, and make possible identification and copying of captions between graphic and
text frames.

6. Modify messages from MenuViewers. They indicate that a frame has to be adjusted in size and
position because a neighbouring viewer has been reshaped, or because its own viewer has been
repositioned

7. Display messages. They originate from procedure InsertChar and handle the displaying of single
characters when a caption is composed (see below).

 69

The frame handler receiving a consume message interprets the request through procedure
InsertChar, and receiving a track message through procedure Edit. If no mouse key is depressed,
the cursor is simply drawn, and thereby the mouse is tracked. Instead of the regular arrow, a
crosshair is used as cursor pattern. Thereby immediate visual feedback is provided to indicate that
now mouse actions are interpreted by the graphics handler (instead of, e.g., a text handler). Such
feedback is helpful when graphic frames appear not only in a menuviewer, but as subframes of a
more highly structured document frame.

Procedure Edit first tracks the mouse while recording further key activities (interclicks) until all keys
are released. The subsequent action is determined by the perceived key clicks. The actions are (the
second key denotes the interclick):

keys = left set caret, if mouse was not moved, otherwise draw new line,
keys = left, middle copy text selection to caret position
keys = left, right set secondary caret (mark)
keys = middle move selection
keys = middle, left copy selection
keys = middle, right shift origin of graph
keys = right select (either object, or objects in area)
keys = right, middle copy selected text to caret position

When copying or moving a set of selected objects, it must be distinguished between the cases where
the source and the destination graphics are the same or are distinct. In the former case, source and
destination positions may lie in the same or in different frames.

Procedure InsertChar handles the creation of new captions. The actual character string is appended
to the global text T, and the new object records its position within T and its length.

A complication arises because the input process consists of as many user actions as there are
characters, and because other actions may possibly intervene between the typing. It is therefore
unavoidable to record an insertion state, which is embodied by the global variable newcap. When a
character is typed, and newcap = NIL, then a new caption is created consisting of the single typed
character. Subsequent typing results in appending characters to the string (and newcap). The
variable is reset to NIL, when the caret is repositioned. The BS character is interpreted as a
backspace by procedure DeleteChar.

Since the caption being generated may be visible simultaneously in several frames, its display must
be handled by a message. For this reason, the special message DispMsg is introduced, and as a
result, the process of character insertion turns out to be a rather complex action. To avoid even
further complexity, the restriction is adopted that all characters of a caption must use the same
attributes (font, color).

The definition of the interface of GraphicFrames is listed in Section 13.3.

13.8.3. Module Graphics
The preceding presentations of the interface definitions have explained the framework of the
graphics system and set the goals for their implementation. We recall that the core module Graphics
handles the data structures representing sets of objects without reliance on the specifications of
individual objects. Even the structural aspects of the object sets are not fixed by the interface.
Several solutions, and hence several implementations are imaginable.

Here we present the simplest solution for representing an abstract, unordered set: the linear, linked
list. It is embodied in the object record's additional, hidden field next. Consequently, a graphic is
represented by the head of the list. The type GraphDesc contains the hidden field first (see listing of
Graphics). In addition, the descriptor contains the exported field sel denoting a selected element, and
the field time indicating the time of its selection. The latter is used to determine the most recent
selection in various viewers.

 70

Additional data structures become necessary through the presence of macros and classes. Macros
are represented by the list of their elements, like graphics. Their header is of type MacHeadDesc in
analogy to GraphDesc. In addition to a macro's name, width, and height, it contains the field first,
pointing to the list's first element, and the field lib, referring to the library from which the macro stems.

A library descriptor is similarly structured: In addition to its name, the field first points to the list of
elements (macros) of the library, which are themselves linked through the field next. Fig. 13.6. shows
the data structure containing two libraries. It is anchored in the global variable firstLib.

Fig. 13.6 Data structure for two libraries, each with three macros

Libraries are permanently stored as files. It is evidently unacceptable that file access be required
upon every reference to a macro, e.g. each time a macro is redrawn. Therefore a library is loaded
into primary store, when one of its elements is referenced for the first time. Procedure ThisMac
searches the data structure representing the specified library and locates the header of the
requested macro.

We emphasize that the structures employed for macro and library representation remain hidden from
clients, just like the structure of graphics remains hidden within module Graphics. Thus, none of the
linkage fields of records (first, next, sel) are exported from the base module. This measure retains
the possibility to change the structural design decisions without affecting the client modules. But
partly it is also responsible for the necessity to include macros in the base module.

A large fraction of module Graphics is taken up by procedures for reading and writing files
representing graphics and libraries. They convert their internal data structure into a sequential form
and vice-versa. This would be a rather trivial task, were it not for the presence of pointers referring to
macros and classes. These pointers must be converted into descriptions that are position-
independent, such as names. The same problem is posed by fonts (which are also represented by
pointers).

Evidently, the replacement of every pointer by an explicit name would be an uneconomical solution
with respect to storage space as well as speed of reading and writing. Therefore, pointers to fonts

Lib0

Lib1

LibraryDesc

firstLib

next
MacHeadDesc

ObjectDesc

first

first

next

 71

and libraries - themselves represented as files - are replaced by indices to font and library
dictionaries. These dictionaries establish a context and are constructed while a file is read. They are
used only during this process and hence are local to procedure Load (or Open). For classes, a
dictionary listing the respective allocation procedures is constructed in order to avoid repeated calls
to determine the pertinent allocator.

When a graphics file is generated by procedure Store, local dictionaries are constructed of fonts,
libraries, and classes of objects that have been written onto the file. Upon encountering a caption, a
macro, or any element whose font, library, or class is not contained in the respective dictionary, a
pair consisting of index and name is emitted to the file, thereby assigning a number to each name.
These pairs are interspersed within the sequence of object descriptions.

When the graphic file is read, these pairs trigger insertion of the font, library, or class in the
respective dictionary, whereby the name is converted into a pointer to the entity, which is obtained by
a loading process embodied by procedures Fonts.This, GetLib, and GetClass. Both the Load and
Store procedures traverse the file only once. The files are self-contained in the sense that all external
quantities are represented by their names. The format of a graphics file is defined in Extended BNF
syntax as follows:

file = tag stretch.
stretch = {item} 255.
item = 0 0 fontno fontname | 0 1 libno libname | 0 2 classno classname allocname |
 1 data | 2 data fontno string | 3 data libno macname | classno data extension.
data = x y w h color.

All class numbers are at least 4; the values 1, 2, and 3 are assigned to lines, captions, and macros.
x, y, w, h are two-byte integer attributes of the base type Object. The attribute color takes a single
byte. The first byte of an item being 0 signifies that the item is an identification of a new font, library,
or class. If the second byte is 0, a new font is announced, if 1 a new library, and if 2 a new class of
elements.

The same procedures are used for loading and storing a library file. In fact, Load and Store read and
write a file stretch representing a sequence of elements which is terminated by a special value (255).
In a library file each macro corresponds to a stretch, and the terminator is followed by values
specifying the macro's overall width, height, and its name. The structure of library files is defined by
the following syntax:

libfile = libtag {macro}.
macro = stretch w h name.

The first byte of each element is a class number within the context of the file and identifies the class
to which the element belongs. An object of the given class is allocated by calling the class' allocation
procedure, which is obtained from the class dictionary in the given context. The class number is used
as dictionary index. The presence of the required allocation procedure in the dictionary is guaranteed
by the fact that a corresponding index/name pair had preceded the element in the file.

The encounter of such a pair triggers the loading of the module specifying the class and its methods.
The name of the pair consists of two parts: the first specifies the module in which the class is
defined, and it is taken as the parameter of the call to the loader (see procedure GetClass). The
second part is the name of the relevant allocation procedure which returns a fresh object to variable
Graphics.new. Thereafter, the data defined in the base type Object are read.

Data belonging to an extension follow those of the base type, and they are read by the extension's
read method. This part must always be headed by a byte specifying the number of bytes which
follow. This information is used in the case where a requested module is not present; it indicates the
number of bytes to be skipped in order to continue reading further elements.

A last noteworthy detail concerns the Move operation which appears as surprisingly complicated,
particularly in comparison with the related copy operation. The reason is our deviation from the
principle that a graphics editor must refrain from an interpretation of drawings. Responsible for this

 72

deviation was the circumstance that the editor was at first primarily used for the preparation of circuit
diagrams. They suggested the view that adjoining, perpendicular lines be connected. Consequently,
the horizontal or vertical displacement of a line was to preserve connections. Procedure Move must
therefore identify all connected lines, and subsequently extend or shorten them.

The definition of the interface of Graphics is listed in Section 13.3.

13.9. Rectangles and curves

13.9.1. Rectangles

In this section, we present two extensions of the basic graphics system which introduce new classes
of objects. The first implements rectangles which are typically used for framing a set of objects. They
are, for example, used in the representation of electronic components (macros, see Fig. 13.2). Their
implementation follows the scheme presented at the end of chapter 13.7 and is reasonably straight-
forward, considering that each rectangle merely consists of four lines. Additionally, a background
raster may be specified.

One of the design decisions occurring for every new class concerns the way to display the selection.
In this case we chose, in contrast to the cases of captions and macros, not inverse video, but a small
square dot in the lower right corner of the rectangle. The data type Rectangle contains one additional
field: lw indicates the line width.

In spite of the simplicity of the notion of rectangles, their drawing method is more complex than might
be expected. The reason is that drawing methods are responsible for appropriate clipping at frame
boundaries. In this case, some of the component lines may have to be shortened, and some may
disappear altogether.

Procedure Handle provides an example of a receiver of a control message. It is activated as soon as
the middle mouse button is pressed, in contrast to other actions, which are initiated after the release
of all buttons. Therefore, this message allows for the implementation of actions under control of
individual handlers interpreting further mouse movements. In this example, the action serves to
change the size of the rectangle, namely by moving its lower left corner.

DEFINITION Rectangles;
 TYPE Rectangle = POINTER TO RectDesc;

 RectDesc = RECORD (Graphics.ObjectDesc)
 lw: INTEGER
 END ;

 VAR method: Graphics.Method;

 PROCEDURE New;
 PROCEDURE Make;
END Rectangles.

13.9.2. Oblique lines and circles

The second extension to be presented is module Curves. It introduces two new kinds of objects:
lines which are not necessarily horizontal or vertical, and circles. All are considered to be variants of
the same type Curve, the variant being specified by the field kind of the object record. Selection is
indicated by a small rectangle at the end of a line and at the lowest point of a circle.

In order to avoid computations involving floating-point numbers and to increase efficiency,
Bresenham algorithms are used. The algorithm for a line defined by bx - ay = 0 (for b ≤ a) is given by
the following statements:

x := 0; y := 0; h := (b – a) DIV 2;
WHILE x <= a DO Dot(x, y);
 IF h <= 0 THEN INC(h, b) ELSE INC(h, b-a); INC(y) END ;

 73

 INC(x)
END

The Bresenham algorithm for a circle given by the equation x2 + y2 = r2 is:
x := r; y := 0; h := 1-r;
WHILE y <= x DO Dot(x, y);
 IF h < 0 THEN INC(h, 2*y + 3) ELSE INC(h, 2*(y-x)+5); DEC(x) END ;
 INC(y)
END

DEFINITION Curves;
 TYPE Curve = POINTER TO CurveDesc;

 CurveDesc = RECORD (Graphics.ObjectDesc)
 kind, lw: INTEGER
 END ;

 (*kind: 0 = up-line, 1 = down-line, 2 = circle*)

 VAR method: Graphics.Method;
 PROCEDURE MakeLine;
 PROCEDURE MakeCircle*;
END Curves.

 74

14 Building and maintenance tools
14.1. The Startup Process
An aspect usually given little attention in system descriptions is the process of how a system is
started. Its choice, however, is itself an interesting and far from trivial design consideration and will
be described here in some detail. Moreover, it directly determines the steps in which a system is
developed from scratch, mirroring the steps in which it builds itself up from a bare store to an
operating body.

The startup process typically proceeds in several stages, each of them bringing further facilities into
play, raising the system to a higher level towards completion. The term for this strategy is boot
strapping or, in modern computer jargon, booting.

Stage 0 is initiated when power is switched on or when the reset button is pressed and released. To
be precise, power-on issues a reset signal to all parts of the computer and holds it for a certain
time. Pushing the reset button therefore appears like a power-on without power having been
switched off. Release of the reset signal triggers the built-in FPGA hardware to load a short
configuration bit-stream from a ROM residing on the Spartan board, called the platform flash, into a
BRAM within the FPGA. This program is called boot loader. Being stored in a ROM, it is always
present. The BRAM is address-mapped onto an upper part of the address space, and the RISC
processor starts execution at this address.

In Stage 1 the boot loader loads the inner core, which consists of modules Kernel, FileDir, Files,
and Modules. The loader first inspects the link register. If its value is 0, a cold start is indicated. (If
the value of the link register is not 0, this signals an abort caused by pressing button 3 on the
board. Then loading is skipped and control is immediately returned to the Oberon command loop).
The disk (SD-card, SPI) is initialized.

The boot loader terminates with a branch to location 0, which transfers control to the just loaded
module Modules, the regular loader.

Stage 2 starts with the initialization body of module Modules which calls the bodies of Kernel,
FileDir and Files, establishing a working file system. Then it calls itself, requesting to load the
central module Oberon. This implicitly causes the loading of its own imports, namely Input, Display,
Viewers, Fonts, and Texts, establishing a working viewer and text system.

This loading of the outer core must be interpreted as the continuation of the loading of the inner
core. To allow proper continuation, the boot loader has deposited the following data in fixed
locations:

 0 A branch instruction to the initializing body of module Modules
12 The limit of available memory
16 The address of the end of the module space loaded
20 The current root of the links of loaded modules
24 The current limit of the module area

In Stage 3, Oberon calls the loader to load the tool module System, and with it its imports
MenuViewers and TextFrames. The initialization of System causes the opening of the viewers for
the system tool and the system log. Control then returns to Oberon and its central loop for polling
input events. Normal operation begins. The booting process is summarized in Figure 14.1.

 75

 Figure 14.1 The four stages of the booting process

This describes the normal case of startup. But, how did the boot loader ever get into the platform-
flash, and how did the inner core ever get into the boot area of the disk, and how did the files of the
outer core get into the file store? In fact, how did the file store get initialized? This is described in
the following section on building tools.

Precisely to solve this problem, the boot loader has been provided with a second source of the boot
data. Instead of from the disk, it may be fetched over a data link, in this case the RS-232 data line.
This choice is set by switch 0.

0 load from the "boot track" of the disk (sectors 2 - 63)
1 load from the RS-232 line (or a network, if available)

In case 1, the data stream originates at a host computer, on which presumably the boot file had
been generated or even the entire system had been built.

In order to keep the boot loader as simple as possible - remember that it is placed in a small flash
memory on every workstation and therefore cannot be changed without a special effort - the format
of the byte stream representing the inner core must be simple. We have chosen the following
structure, which had never to be changed during the entire development effort of the Oberon
System because of both its simplicity and generality:

BootFile = {block}.
block = size address {byte}. (size and address are words)

The address of the last block, distinguished by size = 0, is interpreted as the address of the starting
point of Stage 2.

In this step, a module called Oberon0 is used as the top module, rather than Modules. This module
communicates with the host computer via the RS-232 line and in addition features various
inspection tools. In particular it contains a command copying the just loaded inner core into the disk
(see also Section 14.2).

Flash ROM

Stage 0

FPGA-HW

Config mem

RISC

Disk
Boot area

Memory

Kernel
FileDir
Files

Modules

Disk

Memory

Input
Display
Viewers
Fonts
Texts

Oberon

Disk

Memory

MenuViewers
TextFrames

System

Stage 1

Stage 2

Stage 3

BRAM

boot loader

 76

Still, how did the hardware configuration data and the boot loader get into the Flash ROM? This
step requires the help of proprietary tools of the FPGA manufacturer. Regrettably, their incantation
ceremony typically is rather complex.

After all necessary Verilog modules have been synthesized, the result is the configuration file
RISCTop.bit. The necessary source files are

RISCTop.v, RISC.v, Multiplier.v, Divider.v, FPAdder.v. FP.Multiplier.v, FP.Divider.v, dbram32.v
RS232R.v, RS232T.v, SPI.v, XGS.v, PS2.v, RISC.ucf

Thereafter, the boot loader is compiled and, together with the result of the configuration of the RISC
hardware, loaded into the configuration memory of the FPGA. This Stage 0 is partly done with
proprietory software (dependant on the specific FPGA) and is described in a separate installation
guide.

Figure 14.2 Booting from host computer

A simple boot loader reading from the RS-232 line and using the stream format described above is
shown here:

MODULE* BootLoad;
 IMPORT SYSTEM;
 CONST MT = 12; SP = 14; MemLim = 0E7F00H;
 swi = -60; led = -60; data = -56; ctrl = -52; (*device addresses*)

 PROCEDURE RecInt(VAR x: INTEGER);
 VAR z, y, i: INTEGER;
 BEGIN z := 0; i := 4;
 REPEAT i := i-1;
 REPEAT UNTIL SYSTEM.BIT(ctrl, 0);
 SYSTEM.GET(data, y); z := ROR(z+y, 8)
 UNTIL i = 0;
 x := z
 END RecInt;

 PROCEDURE Load;
 VAR len, adr, dat: INTEGER;
 BEGIN RecInt(len);
 WHILE len > 0 DO
 RecInt(adr);
 REPEAT RecInt(dat); SYSTEM.PUT(adr, dat); adr := adr + 4; len := len - 4 UNTIL len = 0;
 RecInt(len)

RISC.bit

Stage 1

Config mem

FPGA config

RS-232 link

Memory

Kernel
FileDir
Files

Modules
Oberon0

Stage 2

BRAM

boot loader

Xilinx tool
download.cmd

FlashRISC.cmd

RISCTop.bit ins1.mem

RISC.bit

Stage 0

 77

 END ;
 SYSTEM.GET(4, adr); SYSTEM.LDREG(13, adr); SYSTEM.LDREG(12, 20H)
 END Load;

BEGIN SYSTEM.LDREG(SP, MemLim); SYSTEM.LDREG(MT, 20H); SYSTEM.PUT(led, 128);
END BootLoad.

Another detail that must not be ignored is the handling of traps. They are implemented as a single
BRL instruction, jumping conditionally to the address stored in register MT, that is, to entry 0 of the
module table (which is not a module address). This address is deposited by the initialization of
module System, which contains the trap handler. However, traps may also occur during the startup
process. So, a temporary trap handler must also be installed at the very start, that is, when
initializing Kernel.

Finally, it is worth mentioning that small Oberon programs can also be loaded and executed without
the Oberon core. In fact, the boot loader is just one such example. Programs of this kind must be
marked by an asterisk immediately after the symbol MODULE. This causes the compiler to
generate a different starting sequence Such programs are loaded, like the boot loader in Stage 0,
by the Xilinx downloader. They must not import other modules.

14.2. Building Tools

Let us summarize the prerequisites for startup:

0. The FPGA configuration and bootloader must reside in the ROM (platform flash)
1. The boot file must reside on the boot area of the disk.
2. The modules of the outer core must reside in the file system.
3. The default font and System.Tool must be present in the file system.

These conditions are usually met. But they are not satisfied, if either a new, bare machine is
present, or if the disk store is defective. In these cases, the prerequisites must be established with
the aid of suitable tools. The tools needed for the case of the bare machine or the incomplete file
store are called building tools, those required in the case of defects are called maintenance tools.

Building tools allow to establish the preconditions for the boot process on a bare machine.
Establishing condition 0 requires a tool for downloading the hardware configuration of the FPGA
resulting from circuit synthesis, and it requires a compiler for generating the boot loader. Condition
0 is established in Stage 0.

Establishing condition 1 requires a tool for composing the boot file, and one to load it into the boot
area. The former is the compiler, presumably running on a host computer. The resulting files are
linked by a linker (ORL) generating a "binary" file. This file is then downloaded from the host
computer to the RISC running its boot loader. Here we use an extended inner core, where the main
module is not Modules, but Oberon0. The reason is that Oberon0 allows to perform the subsequent
stages by accepting commands over a communication channel (here the RS-232 line). Hence, for
the following stages, the tool on the RISC is Oberon0, communicating with the host computer's
module ORC.

Establishing condition 2 implies the building of a file directory and the loading of files. The pair
Oberon0 and ORC contains commands for initializing a file system, for loading files over the line
connection, and for moving the inner core to the disk's boot area. In addition, Oberon0 contains
further commands for file system, memory and disk inspection. Note that loading (and starting)
Oberon0 automatically starts the entire Oberon system.

There remains the important question of how Oberon0 is loaded onto a bare machine. It is done by
the boot loader with switch 1 being up. The boot file contains the inner core with the top module
being Oberon0 rather than Modules. The procedure is the following:

1. Select the alternative boot source by setting switch0 = 1.
2. Reset and send the boot file from the host The boot file is transferred and Oberon0 is started.

 78

3. Read all files from the host, (which supposedly holds all files needed for the outer core).
4. Invoke the command which loads Oberon. This loads the outer core, sets up the display, and

starts the central loop.

A more modern solution would be to select the network as alternative boot file source. We rejected
this option in order to keep net access routines outside the ROM, in order to keep the startup of a
computer independent of the presence of a network and foreign sources, and also in consideration
of the fact that there exist machines which operate in a stand-alone mode. As it turns out, the need
for the alternative boot file source arises very rarely.

The boot linker ORL, presumably running on a host computer, where the FPGA-tools are available,
is almost identical to the module loader, with the exception that object code is not deposited in
newly allocated blocks, but is output in the form a file. The name of the top module of the inner core
is supplied as parameter.

ORL.Link Modules generates the regular boot file
ORL.Link Oberon0 generates the build-up boot file

Oberon0 imports two modules taking care of communication with ORL on the host computer. They
are the basic module RS232, and module PCLink1 for file transfer. The latter constitutes a task,
accepting commands over the line from ORL. Their interfaces are shown below:

DEFINITION RS232;
 PROCEDURE Send(x: BYTE);
 PROCEDURE Rec(VAR x: BYTE);
 PROCEDURE SendInt(x: INTEGER);
 PROCEDURE SendHex(x: INTEGER);
 PROCEDURE SendReal(x: REAL);
 PROCEDURE SendStr(x: ARRAY OF CHAR);
 PROCEDURE RecInt(VAR x: INTEGER);
 PROCEDURE RecReal(VAR x: REAL);
 PROCEDURE RecStr(VAR x: ARRAY OF CHAR);
 PROCEDURE Line;
 PROCEDURE End;
END RS232.

DEFINITION PCLink1;
 PROCEDURE Run*;
 PROCEDURE Stop*;
END PCLink1.

The command interpreter is a simple loop, accepting commands specified by an integer followed by
parameters which are either integers or names. User-friendliness was not attributed any importance
at this point, and it would indeed be merely luxury. We refrain from elaborating on further details
and concentrate on providing a list of commands provided by Oberon0. This should give the reader
an impression of the capabilities and limitations of this tool module for system initiation and for error
searching. (name stands for a string, and a, secno, m, n stand for integers).

 parameters action
0 s send and mirror s
1 a, n show (in hex) M[a], M[a+4], ... , M[a + n*4]
2 w fill display with words w
3 secno show disk sector
4 filename read file
6 - start PC-link
7 - show allocation, nof sectors, switches, and timer
10 - list modules
11 modname list commands
12 prefix list files (enumerate directory)
13 filename delete file

 79

20 modname load module
21 modname unload module
22 name call command

50 adr, list of values write memory
51 adr, n clear memory (n words)
52 secno, list of values write sector
53 secno, n clear sector (n words)

100 - load boot track
101 - clear file directory

Oberon0 imports modules Kernel, FileDir, Files, Modules, RS232, PCLink1. This is the inner core
plus facilities for communication.

14.3. Maintenance Tools
An important prerequisite for Stage 2 (and the following stages) in the boot process has not been
mentioned above. Recall that the initialization of module FileDir constructs the disk sector
reservation table in the Kernel from information contained on the disk. Obviously, its prerequisite is
an intact, consistent file directory. A single unreadable, corrupted file directory or file header sector
lets this process fail, and booting becomes impossible. To cope with this (fortunately rare) situation,
a maintenance tool has been designed: module DiskCheck.

DiskCheck is organized similarly to Oberon0 as a simple command interpreter, but it imports only
Kernel and RS232. Hence, booting involves only Stages 1 and 2 without any access to the disk.
Operating DiskCheck requires care and knowledge of the structure of the file system (Chapter 7).
The available commands are the following:

 parameters action
0 s send and mirror integer (test)
1 a, n show (in hex) M[a], M[a+4], ... , M[a + n*4]
2 secno show disk sector
3 secno show head sector
4 secno show directory sector
5 - traverse directory
6 secno clear header sector
7 - clear directory (root page)

The essential command is the file directory traversal (5). It lists all faulty directory sectors, showing
their numbers. It also lists faulty header sectors. No changes are made to the file system.

If a faulty header is encountered, it can subsequently be cleared (6). Thereby the file is lost. It is not
removed from the directory, though. But its length will be zero.

Program DiskCheck must be extremely robust. No data read can be assumed to be correct, no
index can be assumed to lie within its declared bounds, no sector number can be assumed to be
valid, and no directory or header page may be assumed to have the expected format. Guards and
error diagnostics take a prominent place.

Whereas a faulty sector in a file in the worst case leads to the loss of that file, a fault in a sector
carrying a directory page is quite disastrous. Not only because the files referenced from that page,
but also those referenced from descendant pages become inaccessible. A fault in the root page
even causes the loss of all files. The catastrophe is of such proportions, that measures should be
taken even if the case is very unlikely. After all, it may happen, and it indeed has occurred.

The only way to recover files that are no longer accessible from the directory is by scanning the
entire disk. In order to make a search at all possible, every file header carries a mark field that is
given a fixed, constant value. It is very unlikely, but not entirely impossible, that data sectors which
happen to have the same value at the location corresponding to that of the mark, may be mistaken
to be headers.

 80

The tool performing such a scan is called Scavenger. It is, like DiskCheck, a simple command
interpreter with the following available commands:

 parameters action
0 s send and mirror integer (test)
1 n Scan the first n sectors and collect headers
2 - Display names of collected files
3 - Build new directory
4 - Transfer new directory to the disk
5 - Clear display

During the scan, a new directory is gradually built up in primary store. Sectors marked as headers
are recorded by their name and creation date. The scavenger is the reason for recording the file
name in the header, although it remains unused there by the Oberon System. Recovery of the date
is essential, because several files with the same name may be found. If one is found with a newer
creation date, the older entry is overwritten.

Command W transfers the new directory to the disk. For this purpose, it is necessary to have free
sectors available. These have been collected during the scan: both old directory sectors (identified
by a directory mark similar to the header mark) and overwritten headers are used as free locations.

The scavenger has proven its worth on more than one occasion. Its main drawback is that it may
rediscover files that had been deleted. The deletion operation by definition affects only the
directory, but not the file. Therefore, the header carrying the name remains unchanged and is
discovered by the scan. All in all, however, it is a small deficiency.

Reference

1. N. Wirth. Designing a System from Scratch. Structured Programming, 1, (1989), 10-18.

 81

15 Tool and service modules

In this chapter, a few modules are presented that do not belong to Oberon's system core.
However, they belong to the system in the sense of being basic, and of assistance in some way,
either to construct application programs, to communicate with external computers, or to analyze
existing programs.

15.1. Basic mathematical functions
Module Math contains the basic standard functions that had been postulated already in 1960 by
Algol 60. They are

sqrt(x) the square root
exp(x) the exponential function
ln(x) the natural logarithm
sin(x) the sine function
cos(x) the cosine function

They are presented here only briefly without discussing their approximation methods. However, we
point out how advantage can be taken from knowledge about the internal representation of
floating-point numbers.

15.1.1. Conversion between integers and floating-point numbers

The Oberon System adopts the standard format postulated by IEEE. Here we restrict it to the 32-
bit variant. A floating-point number x consists of 3 parts

s the sign 1 bit
e the exponent 8 bits
m the mantissa 23 bits

Its value is defined as x = (-1)s × 2 e+127 × (1.m). A number is in normalized form, if its mantissa
satisfies 1.0 ≤ m < 2.0. It is assumed that numbers are always normalized, and therefore the
leading 1-bit is omitted. The exception is the singular value 0, which cannot be normalized. It must
therefore be treated as a special case.

It follows that integers and floating-point numbers are represented quite differently, and that
conversion operations are necessary to transfer a number from one format to the other. This is the
reason why the Oberon language keeps the two types INTEGER and REAL separate. Conversion
must be explicitly specified by using the two predefined functions

n := FLOOR(x) REAL→ INTEGER
x := FLT(n) INTEGER → REAL

Note: FLOOR(x) rounds toward -inf. For example FLOOR(1.5) = 1, FLOOR(-1.5) = -2.

The RISC processor does not feature specific instructions implementing these functions. Instead,
the compiler generates inline code using the FAD instruction with special options suppressing
normalization. This option is specified by the u and v modifier bits of the instruction.

The FLOOR function is realized by adding 0 with an exponent of 127 + 24 and suppressing the
insertion of a leading 1-bit (u = 1). This causes the mantissa of the argument to be shifted right
until its exponent is equal to 151. The RISC instructions are:

MOV' R1 R0 4B00H R1 := 4B000000H
FAD' R0 R0 R1

The FLT function is implemented also by adding 0 with an exponent of 151 and forced insertion of
a leading 1-bit (v = 1).

 82

MOV' R1 R0 4B00H
FAD" R0 R0 R1

There are two predefined procedures for packing and unpacking a floating-point number:

PACK(x, e) x := x × 2e (for x > 0)
UNPK(x, e) assign to x and e, such that x×2e = x0, where x0 is the original value of x,
 x becomes normalized, that is 1.0 ≤ x < 2.0

Assuming R0 = x and R1 = e, the instruction sequence for PACK(x, e) is
LSL R1 R1 23
ADD R0 R0 R1
STR R0 x

Again assuming x = R0, the instruction sequence for UNPK(x, e) is
ASR R1 R0 23
SUB R1 R1 127
STR R1 e
LSL R1 R1 23
SUB R0 R0 R1
STR R0 x

15.1.2. The square root function

We rely on the definition x = 2e×m Using the intrinsic UNPK procedure, the components m and e
are obtained from x. Then the square root is computed according to the formulas

sqrt(x) = 2(e DIV 2) × sqrt(m) if e is even,
sqrt(x) = 2(e DIV 2 - 1) × sqrt(2) × sqrt(m) if e is odd.

The advantage is that the argument of the square root now lies in the narrow interval [1.0, 2.0], and
therefore is easier and faster to approximate by a continued fraction.

PROCEDURE sqrt(x: REAL): REAL;
 CONST c1 = 0.70710680; (* 1/sqrt(2) *)
 c2 = 0.590162067;
 c3 = 1.4142135; (*sqrt(2)*)
 VAR s: REAL; e: INTEGER;
BEGIN ASSERT(x >= 0.0);
 IF x > 0.0 THEN
 UNPK(x, e);
 s := c2*(x+c1);
 s := s + (x/s);
 s := 0.25*s + x/s;
 s := 0.5 * (s + x/s);
 IF ODD(e) THEN s := c3*s END ;
 PACK(s, e DIV 2)
 ELSE s := 0.0
 END ;
 RETURN s
END sqrt;

15.1.3. The exponential function

Since our floating-point format is based on an exponent of 2, we first use the formula

exp(x) = ex = 2y with y = x × log2(e) = x / ln(2) log2(e) = 1.4426951

and first compute y. We decompose y into its integral part n = FLOOR(y) and its fractional part y0 =
y - n. Since 2n × 2y0 = 2n+y0, the result is the sum of the exponent n and the mantissa 2y0. Again, the
advantage of the decomposition is that the argument y0 of the polynomial approximation lies in the
narrow interval [1.0, 2.0].

 83

PROCEDURE exp(x: REAL): REAL;
 CONST c1 = 1.4426951; (*1/ln(2) *)
 p0 = 1.513864173E3;
 p1 = 2.020170000E1;
 p2 = 2.309432127E-2;
 q0 = 4.368088670E3;
 q1 = 2.331782320E2;
 VAR n: INTEGER; p, y, yy: REAL;
BEGIN y := c1*x; (*1/ln(2)*)
 n := FLOOR(y + 0.5); y := y - FLT(n);
 yy := y*y;
 p := ((p2*yy + p1)*yy + p0)*y;
 p := p/((yy + q1)*yy + q0 - p) + 0.5;
 PACK(p, n+1); RETURN p
END exp;

15.1.4. The logarithm

Again we take advantage of the presence of an exponent in the floating-point representation and
use the equations

ln (a×b) = ln a + ln b
ln (2e×m) = log2(2e×m) × ln(2) = e × ln(2) + ln m
PROCEDURE ln(x: REAL): REAL;
 CONST c1 = 0.70710680; (* 1/sqrt(2) *)
 c2 = 0.69314720; (* ln(2) *)
 p0 = -9.01746917E1;
 p1 = 9.34639006E1;
 p2 = -1.83278704E1;
 q0 = -4.50873458E1;
 q1 = 6.176106560E1;
 q2 = -2.07334879E1;
 VAR e: INTEGER; y: REAL;
BEGIN ASSERT(x > 0.0); UNPK(x, e);
 IF x < c1 THEN x := x*2.0; e := e-1 END ;
 x := (x - 1.0)/(x + 1.0);
 y := c2 * FLT(e) + x * ((p2*x + p1)*x + p0) / (((x + q2)*x + q1)*x + q0);
 RETURN y
END ln;

15.1.5. The sine function

Figure 15.1 Sine function y = sin(x)

First, the argument x is transposed into the interval [0, π/4] by computing

π 2π0

0 2 4

π/2

1 3

y

x 3π/2

2x/π

 84

n := FLOOR(y+0.5); y := (y - n)

and then distinguish between two approximating polynomials depending on whether x < π/4.
PROCEDURE sin(x: REAL): REAL;
 CONST c1 = 6.3661977E-1; (*2/pi*)
 p0 = 7.8539816E-1;
 p1 = -8.0745512E-2;
 p2 = 2.4903946E-3;
 p3 = -3.6576204E-5;
 p4 = 3.1336162E-7;
 p5 = -1.7571493E-9;
 p6 = 6.8771004E-12;
 q0 = 9.9999999E-1;
 q1 = -3.0842514E-1;
 q2 = 1.5854344E-2;
 q3 = -3.2599189E-4;
 q4 = 3.5908591E-6;
 q5 = -2.4609457E-8;
 q6 = 1.1363813E-10;
 VAR n: INTEGER; y, yy, f: REAL;
BEGIN y := c1*x;
 IF y >= 0.0 THEN n := FLOOR(y + 0.5) ELSE n := FLOOR(y - 0.5) END ;
 y := (y - FLT(n)) * 2.0; yy := y*y;
 IF ODD(n) THEN f := (((((q6*yy + q5)*yy + q4)*yy + q3)*yy + q2)*yy + q1)*yy + q0
 ELSE f := ((((((p6*yy + p5)*yy + p4)*yy + p3)*yy + p2)*yy + p1)*yy + p0)*y
 END ;
 IF ODD(n DIV 2) THEN f := -f END ;
 RETURN f
END sin;

15.2. A data link
Module PCLink serves to transfer data (files) to and from another system. Data are transmitted as
a sequence of blocks. Each block is a sequence of bytes. The number of data bytes lies between 0
and 255. They are preceded by a single byte indicating the length. Blocks are 255 bytes long,
except the last block, whose length is less than 255.

Here, the transmission channel is an RS-232 line. The interface consists of two registers, one for a
data byte (address = -56), and one for the status (address = -52). Bit 0 of this status register
indicates, whether a byte had been received. Bit 1 of the status register indicates, whether the byte
in the data register had been sent. (Note: the default transmission rate of the RISC is 9600 bit/s).

This module represents a server running as an Oberon task which must be activated by the
command Run. A server running on the partner system must be the master issuing requests. The
command sequence is a REC byte, a SND byte, or a REQ byte (for testing the connection). REC
and SND must be followed by a file name, and the sequence of blocks.

Every block is acknowledged by the receiver sending an ACK byte, for which the sender waits
before sending the next block. There is no synchronization within blocks. Because writing bytes
onto a file may involve operations of unpredictable duration, the received bytes are not written to
the file immediately. They are buffered and only output after the entire block had been received.

MODULE PCLink; (*NW 8.2.2013 for Oberon on RISC*)
 IMPORT SYSTEM, Files, Texts, Oberon;
 CONST data = -56; stat = -52;
 BlkLen = 255;
 REQ = 20H; REC = 21H; SND = 22H; ACK = 10H; NAK = 11H;

 VAR T: Oberon.Task; W: Texts.Writer;
 PROCEDURE Rec(VAR x: BYTE);
 BEGIN

 85

 REPEAT UNTIL SYSTEM.BIT(stat, 0);
 SYSTEM.GET(data, x)
 END Rec;

 PROCEDURE RecName(VAR s: ARRAY OF CHAR);
 VAR i: INTEGER; x: BYTE;
 BEGIN i := 0; Rec(x);
 WHILE x > 0 DO s[i] := CHR(x); INC(i); Rec(x) END ;
 s[i] := 0X
 END RecName;

 PROCEDURE Send(x: BYTE);
 BEGIN
 REPEAT UNTIL SYSTEM.BIT(stat, 1);
 SYSTEM.PUT(data, x)
 END Send;

 PROCEDURE Task;
 VAR len, n, i: INTEGER;
 x, ack, len1, code: BYTE;
 name: ARRAY 32 OF CHAR;
 F: Files.File; R: Files.Rider;
 buf: ARRAY 256 OF BYTE;
 BEGIN
 IF SYSTEM.BIT(stat, 0) THEN (*byte available*)
 Rec(code);
 IF code = SND THEN (*send file*)
 RecName(name); F := Files.Old(name);
 IF F # NIL THEN
 Send(ACK); len := Files.Length(F); Files.Set(R, F, 0);
 REPEAT
 IF len >= BlkLen THEN len1 := BlkLen ELSE len1 := len END ;
 Send(len1); n := len1; len := len - len1;
 WHILE n > 0 DO Files.ReadByte(R, x); Send(x); DEC(n) END ;
 IF ack # ACK THEN len := 0 END
 UNTIL len1 < BlkLen
 ELSE Send(11H)
 END
 ELSIF code = REC THEN (*receive file*)
 RecName(name); F := Files.New(name);
 IF F # NIL THEN
 Files.Set(R, F, 0); Send(ACK);
 REPEAT Rec(x); len := x; i := 0;
 WHILE i < len DO Rec(x); buf[i] := x; INC(i) END ;
 i := 0;
 WHILE i < len DO Files.WriteByte(R, buf[i]); INC(i) END ;
 Send(ACK)
 UNTIL len < 255;
 Files.Register(F); Send(ACK)
 ELSE Send(NAK)
 END
 ELSIF code = REQ THEN Send(ACK) (*for testing*)
 END
 END
 END Task;

 PROCEDURE Run*;
 BEGIN Oberon.Install(T); Texts.WriteString(W, "PCLink started");
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END Run;

 PROCEDURE Stop*;

 86

 BEGIN Oberon.Remove(T); Texts.WriteString(W, "PCLink stopped");
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
 END Stop;

BEGIN Texts.OpenWriter(W); T := Oberon.NewTask(Task, 0)
END PCLink.

15.3. A generator of graphic macros
The module MacroTool serves to create macros for the graphic system (Ch. 13). It provides the
commands OpenMacro, MakeMacro, LoadLibrary and StoreLibrary.

OpenMacro decomposes the selected macro into its elements and places them at the position of
the caret. This command is typically the first if an existing macro is to be modified.

MakeMacro L M collects all selected objects in the frame designated by the star pointer and unites
them into macro M. This macro is displayed at the caret position and inserted into library L. If no
such library exists, a new one is created.

LoadLibrary L loads the library L (under file name L.Lib). Note that a library must have been stored,
before it can be loaded.

StoreLibrary stores library L (with filename L.Lib).

The required modules are Texts, Oberon, Graphics, GraphicFrames.

 1

16 Implementation of the RISC processor

16.1. Introduction
The design of the processor to be described here in detail was guided by two intentions. The first
was to present an architecture that is distinct in its regularity, minimal in the number of features, yet
complete and realistic. It should be ideal to present and explain the main principles of processors.
In particular, it should connect the subjects of architectural and compiler design, of hardware and
software, which are so closely interconnected.

Clearly “real”, commercial processors are far more complex than the one presented here. We
concentrate on the fundamental concepts rather than on their elaboration. We strive for a fair
degree of completeness of facilities, but refrain from their “optimization”. In fact, the dominant part
of the vast size and complexity of modern processors and software is due to speed-up called
optimization. It is the main culprit in obfuscating the basic principles, making them hard, if not
impossible to study. In this light, the choice of a RISC (Reduced Instruction Set Computer) is
obvious.

The use of an FPGA provides a substantial amount of freedom for design. Yet, the hardware
designer must be much more aware of availability of resources and of limitations than the software
developer. Also, timing is a concern that usually does not occur in software, but pops up
unavoidably in circuit design. Nowadays circuits are no longer described in terms of elaborate
diagrams, but rather as a formal text. This lets circuit and program design appear quite similar. The
circuit description language – we here use Verilog – appears almost the same as a programming
language. But one must be aware that differences still exist, the main one being that in software we
create mostly sequential processes, whereas in hardware everything “runs” concurrently. However,
the presence of a language – a textual definition – is an enormous advantage over graphical
schemata. Even more so are systems (tools) that compile such texts into circuits, taking over the
arduous task of placing components and connecting them (routing). This holds in particular for
FPGAs, where components and wires connecting them are limited, and routing is a very difficult
and time-consuming matter.

The development of this RISC progressed through several stages. The first was the design of the
architecture itself, (more or less) independent of subsequent implementation considerations. Then
followed a first implementation called RISC-0. For this a Harvard Architecture was chosen, implying
that two distinct memories are used for program and for data. For both chip-internal block RAMs
were used. The Harvard architecture allows for a neat separation of the arithmetic from the control
unit.

But these blocks of RAM are relatively small on the used Spartan-3 development board (1 - 4K
words). This board, however, provides also an FPGA-external static RAM with a capacity of 1
MByte. In a second effort, the BRAM for data was replaced by this SRAM. Both instructions and
data are placed into the SRAM, resulting in a von Neumann architecture.

The RISC hardware is characterized by three interfaces. The first is the programmer's interface, the
architecture, that is, those aspects that are relevant to the programmer, in particular, the instruction
set. It is described in Appendix A2. The second is the hardware interface between the processor
core and its environment, described here. The third is that which connects the environment with
physical devices such as memory, keyboard and display. This is described in Chapter 17.

module RISC5(
input clk, rst, stallX,
input [31:0] inbus, codebus,
output [19:0] adr, // memory and device addresses
output rd, wr, ben, // read, write, byte enable control signals for memory
output [31:0] outbus);

 2

The main parts of the hardware interface are three busses, the data input and output busses, the
code bus, and the address bus. Signals rd and wr indicate, whether a read or a write operation is to
be performed. ben indicates a byte (rather than word) access. The entire processor operates
synchronously on the clock clk (25 MHz on Spartan-3), rst is the reset signal (from a push button on
the development board), and stall is the input to stall the processor.

Figure 16.1 The processor's interface

First we concentrate on the implementation of the processor core, its realization in the form of
circuits. They are divided into two parts, the arithmetic/logic unit processing data, and the control
unit determining the flow of instructions.

16.2. The arithmetic and logic unit
The ALU features a bank of 16 registers with 32 bit words. Arithmetic and logical operations,
represented by instructions, always operate on these registers. Data can be transferred between
memory and registers by separate load and store instructions. This is an important characteristic of
RISC architectures, developed between 1975 and 1985. It contrasts with the earlier CISC
architectures (Complex instruction set): Memory is largely decoupled from the processor. A second
important characteristic is that most instructions take a single clock cycle (25 MHz) for their
execution. The exceptions are access to memory, multiplication and division.. More about this will be
presented later. This single-cycle rule makes such processors predictable in performance. The
number of cycles and the time required for executing any instruction sequence is precisely defined.
Predictability is essential in all real-time applications.

The data processing unit consisting of ALU and registers is shown in Figure 16.2. Evidently, data
cycle from registers through the ALU, where an operation is performed, and the result is deposited
back into a register. The ALU embodies the circuits for arithmetic operations, logical operations,
and shifts. The operations available are listed below. They are described in more detail in
Appendix A2. The operand n is either a register or a part of the instruction itself.

0 MOV a, n R.a := n
1 LSL a, b, n R.a := R.b ← n (shift left by n bits)
2 ASR a, b, n R.a := R.b → n (shift right by n bits with sign extension)
3 ROR a, b, n R.a := R.b rot n (rotate right by n bits)
4 AND a, b, n R.a := R.b & n logical operations
5 ANN a, b, n R.a := R.b & ~n
6 IOR a, b, n R.a := R.b or n inclusive or
7 XOR a, b, n R.a := R.b xor n exclusive or
8 ADD a, b, n R.a := R.b + n integer arithmetic
9 SUB a, b, n R.a := R.b – n
10 MUL a, b, n R.a := R.b х n
11 DIV a, b, n R.a := R.b div n

RISC clk
rst
stall

inbus
codebus

rd
wr
ben

adr
outbus

 3

12 FAD a, b, c R.a := R.b + R.c floating-point arithmetic
13 FSB a, b, c R.a := R.b – R.c
14 FML a, b, c R.a := R.b х R.c
15 FDV a, b, c R.a := R.b / R.c

The following excerpt describes the essence of the ALU circuits. It is written in the HDL Verilog
and refers to the following wires and registers.

wire [31:0] IR;
wire p, q, u, v, w; // instruction fields IR[31], IR[30], IR[29], IR[28], IR[16]
wire [3:0] op, ira, irb, irc; // instruction fields IR[19:16], IR[27:24], IR[23:20], IR[3:0]
wire [15:0] imm; // instruction field IR[15:0]

wire [31:0] A, B, C0, C1, regmux;
wire [31:0] s3, t3, quotient, fsum, fprod, fquot;
wire [32:0] aluRes;
wire [63:0] product;

reg [31:0] R [0:15]; // array of 16 registers
reg N, Z, C, OV; // condition flags

Fig. 16.2. Processor core with ALU and registers

B and C0 are the outputs from the register bank, and A is its input. The register numbers ira for port
A, irb for port B, and irc for port C0 are taken from 4-bit fields of the instruction register IR. C1 is the
multiplexer selecting among the register output C0 and the immediate field imm. s3 and t3 are
outputs of the shift units (Sect. 16.2.1). product is the output of the multiplier (16.2.2), quotient and
remainder those of the divider (16.2.3), fsum that of the floating-point adder (16.2.4), fprod that of the
floating-point multiplier (16.2.5), and fquot the output of the floating-point divider (16.2.6).

assign A = R[ira];
assign B = R[irb];
assign C0 = R[irc];
assign C1 = q ? {{16{v}}, imm} : C0;

The following represents the main instruction decoding and selection of results. The opcodes refer to
specific values of fields p and op of IR. Note that if x then y else z is denoted in Verilog by x ? y : z.

assign aluRes =

Register
bank

ALU

a

b c
constant
from IR

 4

 MOV ? (q ? (~u ? {{16{v}}, imm} : {imm, 16'b0}) :
 (~u ? C0 : (~irc[0] ? H : {N, Z, C, OV, 20'b0, 8'b01010000}))) :
 LSL ? t3 : // output of left shift unit
 (ASR|ROR) ? s3 : // output of right shift unit
 AND ? B & C1 :
 ANN ? B & ~C1 :
 IOR ? B | C1 :
 XOR ? B ^ C1 :
 ADD ? B + C1 + (u & C) :
 SUB ? B - C1 - (u & C) :
 MUL ? product [31:0] : // output of multiplier
 DIV ? quotient :
 (FAD|FSB) ? fsum :
 FML ? fprod :
 FDV ? fquot : 0;

The input to the register bank, regmux, is selected from either alures, inbus (for LDR instructions),
or the program address nxpc (for branch and link instructions). The signal regwr determines,
whether data are to be stored (written) into the register bank. Details must be gathered from the
respective program listing RISC.v.

always @ (posedge clk) begin
 R[ira] <= regwr ? regmux : A;
 N <= regwr ? regmux[31] : N;
 Z <= regwr ? (regmux == 0) : Z;
 C <= (ADD|SUB) ? aluRes[32] : C;
 OV <= (ADD|SUB) ? aluRes[32] ^ aluRed[31] : OV ;
end

Whenever a register is written, the condition flags are also affected. They are N (aluRes negative),
Z (aluRes zero), C (carry), and OV (overflow). The latter apply only to addition and subtraction.

16.2.1 Shifters

Shifters are multi-way multiplexers. For a 32-bit word, the simplest solution would be 32 32-way
multiplexers. But this is hardly economical. On the FPGA used here, 4-way muxes are basic cells.
It is therefore beneficial, to compose a shifter out of 4-way muxes. Now the obvious solution is to
use 3 levels of muxes through which data flow. The first level shifts by amounts of 0, 1, 2, or 3, the
second by amounts of 0, 4, 8, 12, and the third by 0 or 16. This scheme is programmed as follows
for left shifts (instruction LSL) with B as input, sc0 = C1[1:0] and sc1 = C1[3:2] as shift counts, and
t3 as output:

assign t1 = (sc0 == 3) ? {B[28:0], 3'b0} :
 (sc0 == 2) ? {B[29:0], 2'b0} :
 (sc0 == 1) ? {B[30:0], 1'b0} : B;
assign t2 = (sc1 == 3) ? {t1[19:0], 12'b0} :
 (sc1 == 2) ? {t1[23:0], 8'b0} :
 (sc1 == 1) ? {t1[27:0], 4'b0} : t1;
assign t3 = C1[4] ? {t2[15:0], 16'b0} : t2;

The solution for right shifts is analogous. An additional level of multiplexing is required, shifting in
either the sign bit (ASR with sign propagation) or bits from the low end of the word (ROR), making
a barrel shifter. This selection is controlled by the instruction bit w = IR[16].

16.2.2. Multiplication

Multiplication is an inherently more complex operation than addition and subtraction. After all,
multiplication can be composed (of a sequence) of additions. There are many methods to
implement multiplication, all – of course – based on the same concept of a series of additions.
They show the fundamental problem of trade-off between time and space (circuitry). Some
solutions operate with a minimum of circuitry, namely a single adder used for all 32 additions
executed sequentially (in time). They obviously sacrifice speed. The other extreme is multiplication

 5

in a single cycle, using 32 adders in series (in space). This solution is fast, but the amount of
required circuitry is high..

Before we present the sequential solution, let us briefly recapitulate the basics of a multiplication p
:= x × y. Here p is the product, x the multiplier, and y the multiplicand. Let x and y be unsigned
integers. Consider x in binary form.

x = x31×231 + x30×230 + … + x1×21 + x0×20

Evidently, the product is the sum of 32 terms of the form xk×2k×y, i.e. of y left shifted by k positions
multiplied by xk. Since xk is either 0 or 1, the product is either 0 or y (shifted). Multiplication is thus
performed by an adder and a selector. The selector is controlled by xk, a bit of the multiplier.
Instead of selecting this bit among x0 … x31, we right shift x by one bit in each step. Then the
selection is always according to x0. The add-shift step then is

IF ODD(x) THEN p := p + y END ;
y := 2*y; x := x DIV 2

whereby multiplication by 2 is done by a left shift, and division by 2 by a right shift: As an example,
consider the multiplication of two 4-bit integers x = 5 and y = 3, requiring 4 steps:

 p x y

 0000'0000 0101 0000'0011
add y to p 0000'0011 0101 0000'0011
shift 0000'0011 0010 0000'0110
add 0 to p 0000'0011 0010 0000'0110
shift 0000'0011 0001 0000'1100
add y to p 0000'1111 0001 0000'1100
shift 0000'1111 0000 0001'1000
add 0 to p 0000'1111 0000 0001'1000
shift 0000'1111 0000 0011'0000 p = 15

The shifting of x to the right also suggests that instead of shifting y to the left in each step, we
keep y in the same position and shift the partial sum p to the right. We notice that the size of x
decreases by 1 in each step, whereas the size of p increases by 1. This allows to pack p and x
into a single double register <B, A> with a shifting border line. At the end, it contains the product p
= x × y.

 p x

 0000 0101
add y to p 0011 0101
shift 00011 010
add 0 to p 00011 010
shift 000011 01
add y to p 001111 01
shift 0001111 0
add 0 to p 0001111 0
shift 00001111 p = 15

p = {B[31:0], A{31:[32-k]}, x = A[31-k:0] k = 0 … 31

The multiplier is controlled by a rudimentary state machine S, actually a simple 5-bit counter
running from 0 to 31. The multiplier is shown schematically in Figure 16.3.

The multiplier interprets its operands as signed (u = 0) or unsigned (u = 1) integers. The difference
between unsigned and signed representation is that in the former case the first term has a
negative weight (-x31×231). Therefore, implementation of signed multiplication requires very little
change: Term 31 is subtracted instead of added (see complete program listing below).

 6

Figure 16.3. Schematic of multiplier

During execution of the 32 add-shift steps the processor must be stalled. The process proceeds
and the counter S advances as long as the input MUL is active (high). MUL indicates that the
current operation is a multiplication, and the signal is stable until the processor advances to the
next instruction. This happens when step 31 is reached (Figure 16.4).

stall = MUL & ~(S == 31);
S <= MUL ? S+1 : 0;

Figure 16.4. Generating stall

The details of the simple multiplier are listed below:
module Multiplier(
 input CLK, MUL, u,
 output stall,
 input [31:0] x, y,
 output [63:0] z);

reg [4:0] S; // state
reg [31:0] B2, A2; // high and low parts of partial product
wire [32:0] B0, B00, B01;
wire [31:0] B1, A0, A1;

assign stall = MUL & ~(S == 31);
assign B00 = (S == 0) ? 0 : {B2[31] & u, B2};
assign B01 = A0[0] ? {y[31] & u, y} : 0;
assign B0 = ((S == 31) & u) ? B00 - B01 : B00 + B01;
assign B1 = B0[32:1];
assign A0 = (S == 0) ? x : A2;
assign A1 = {B0[0], A0[31:1]};
assign z = {B1, A1};

always @ (posedge(CLK)) begin
 B2 <= B1; A2 <= A1;
 S <= MUL ? S+1 : 0;
end
endmodule

S

B A

+

0 0 y

shift shift

x

MUL

0 1 30 31

stall

 7

Implementing multiplication in hardware made the operation about 30 times faster than its solution
by software. A significant factor! As multiplication is a relatively rare operation – at least in
comparison with addition and subtraction – early RISC designs (MIPS, SPARC, ARM) refrained
from its full implementation in hardware. Instead, an instruction called multiply step was provided,
performing a single add-shift step in one clock cycle. A multiplication was then programmed by a
sequence of 32 step instructions, typically provided as a subroutine. This measure of economy
was abandoned, when hardware became faster and cheaper.

The FPGA used on the Spartan-3 board features a welcome facility for speeding up multiplication,
namely fast 18 x 18 bit multiplier units. These are made available as basic cells of the FPGA, and
they multiply in a single clock cycle. Considering an operand x = x1×216 + x0, the product is
obtained as the sum of only 4 terms:

p = x × y = x1×y1×232 + (x0×y1 + x1×y0)×216 + x0×y0

Thereby multiplication of two 32-bit integers can be performed in 2 cycles only, one for
multiplications, one for addition. Four multipliers are needed. For details, the reader is referred to
the program listing (module Multiplier1).

16.2.3. Division

Division is similar to multiplication in structure, but slightly more complicated. We present its
implementation by a sequence of 32 shift-subtract steps, the complement of add-shift. We here
discuss division of unsigned integers only.

q = x DIV y r = x MOD y

q is the quotient, r the remainder. These are defined by the invariants

x = q×y + r with 0 ≤ r < y

Both q and r are held in registers. Initially we set r to x, the dividend, and then subtract multiples
of y (the divisor) from it, each time checking that the result is not negative. This shift-subtract step
is

r := 2*r; q := 2*q;
IF r – y ≥ 0 THEN r := r – y END

As an example, consider the division of the 8-bit integer x = 14 by the 4-bit integer y = 4, where
multiplication and division by 2 are done by shifts:

 r q y

 0000'1110 0000 0001'1000
shift 0000'1110 0000 0001'1000 r < y
sub 0 from r 0000'1110 0000 0000'1100
shift 0000'1110 0000 0000'1100 r >= y
sub y from r 0000'0010 0001 0000'1100
shift 0000'0010 0010 0000'0110 r < y
sub 0 from r 0000'0010 0010 0000'0110
shift 0000'0010 0100 0000'0011 r < y
sub y from r 0000'0010 0100 0000'0011 q = 4, r = 2

As with multiplication this arrangement may be simplified by putting r and q into a double-length
shift register, and by shifting r to the left instead of y to the right. This results in

 r q

 0000'1110
shift 0001'110 0 r < Y
sub 0 from r 0001'110 0
shift 0011'10 00 r >= Y
sub y from r 0000'10 01
shift 0001'0 010 r < Y
sub 0 from r 0001'0 010

 8

shift 0010 0100 r < Y
sub 0 from r 0010 0100 q = 4, r = 2

This scheme is represented by the circuit shown in Figure 16.5.

Figure 16.5. Schematic of divider

Stall generation is the same as for the multiplier. A division takes 32 clock cycles. Further details
are shown in the subsequent program listing.

module Divider(
 input clk, DIV,
 output stall,
 input [31:0] x, y,
 output [31:0] quot, rem);

reg [4:0] S; // state
reg [31:0] r3, q2;
wire [31:0] r0, r1, r2, q0, q1, d;

assign stall = DIV & ~(S == 31);
assign r0 = (S == 0) ? 0 : r3;
assign d = r1 - y;
assign r1 = {r0[30:0], q0[31]};
assign r2 = d[31] ? r1 : d;
assign q0 = (S == 0) ? x : q2;
assign q1 = {q0[30:0], ~d[31]};
assign rem = r2;
assign quot = q1;

always @ (posedge(clk)) begin
 r3 <= r2; q2 <= q1;
 S <= DIV ? S+1 : 0;
end
endmodule

16.3. Floating-point arithmetic
The RISC uses the IEEE Standard for representing REAL (floating-point) numbers with 32 bits.
The word is divided into 3 fields: s for the sign, e for the exponent, and m for the mantissa. The
value is

x = (-1)s × 2e-127 × 1.m with 1.0 ≤ m < 2.0 (normalized form)

Numbers are represented in sign-magnitude form. This implies that for sign inversion only the sign
bit must be inverted, and exponent and mantissa remain unchanged.

Zero is a special case represented by 32 0-bits, and therefore has to be treated separately.
Furthermore, e = 255 denotes "not a number". It is generated in the case of arithmetic overflow.

S

R Q

–

0 0 y

shift shift

x

d

 9

Figure 16.6 IEEE standard floating-point representation of REAL numbers

16.3.1. Floating-point addition

If two numbers are to be added, they must have the same exponent. This implies that the
summand with the smaller exponent must be denormalized. m is shifted to the right and e is
incremented accordingly. That is, if d is the difference of the two exponents, m is multiplied by 2d,
and e is incremented by d. After the addition, the sum must be rounded and post-normalized. m is
shifted to the left and e is decremented accordingly. The shift amount is determined by the
position of the leftmost one-bit. This results in the scheme shown in Figure 16.7, and the module's
interface is

module FPAdder(
 input clk, run, u, v,
 input [31:0] x, y,
 output stall,
 output [31:0] z);

Figure 16.7 Steps of floating-point addition

s e m

1 8 23

x s e m

0 24 28

m

0 24

01xm

m 01x0

m x3

convert to sign-magnitude

convert to complement

denormalize (shift right)

add x3 + y3

x+y Sum

26

x+y s

m t3

post-normalise (shift left)

s e m

24 28

1

 10

It is important to achieve proper rounding. This is done by extending the mantissa of both
operands by a guard bit, initialized to 0. A one is added (effectively 0.5) and at the end the guard
bit is discarded.

The two predefined conversion functions FLT and FLOOR are conveniently implemented as
additions. A denormalized 0 is added to the argument, effecting the proper shift. In the case of
FLT (modifier bit u = 1), denormalization is omitted (no 1-bit inserted), and in the case of FLOOR
(modifier bit v = 1), post-normalization is suppressed.

16.3.2. Floating-point multiplication

A product is given by the equation

p = x × y = (2xe × xm) × (2ye × ym) = 2xe+ye × (xm * ym)

p = (xs, xe, xm) × (ys, ye, ym) = (xs xor ys, xe + ye, xm × ym)

That is, exponents are added, mantissas multiplied. Denormalization is not needed. Post-
normalization is a right shift of at most one bit, because if 1.0 ≤ xm, ym < 2.0, the result satisfies
1.0 ≤ xm*ym < 4.0. The sign of the product is the exclusive or of the signs of the arguments. The
multiplier module's interface is

module FPMultiplier(
 input clk, run,
 input [31:0] x, y,
 output stall,
 output [31:0] z);

16.3.3. Floating-point division

A quotient is given by the equation

q = x / y = (2xe × xm) / (2ye × ym) = 2xe-ye × (xm / ym)

q = (sx, ex, mx) / (sy, ey, my) = (sx xor sy, ex - ey, mx / my)

That is, exponents are subtracted, mantissas divided. Denormalization is not needed. Post-
normalization requires a left shift by at most a single bit, because if 1.0 ≤ xm, ym < 2.0, the result
satisfies 0.5 ≤ xm/ym < 2.0. The sign of the product is the exclusive or of the signs of the
arguments. The divider module's interfaces is

module FPDivider(
 input clk, run,
 input [31:0] x, y,
 output stall,
 output [31:0] z);

16.4. The Control Unit
The control unit determines the sequence of executed instructions. It contains two registers, the
program counter PC holding the address of the current instruction, and the current instruction
register IR holding the instruction currently being interpreted. Instructions are obtained from
memory through the codebus (see interface), from where the decoding signals emanate. Mostly,
the arithmetic unit and the control unit operate concurrently (in parallel). While the arithmetic unit
performs the operation held in register IR and data signals flow through the ALU, the control unit
fetches in the same clock cycle the next instruction from memory in the location with the address
held in PC. Next address and next instruction are latched in the registers at the end of a cycle.
This scheme constitutes a one-element pipeline of instructions.

The principal task of the control unit is to generate the address of the next instruction. There are
essentially only four cases:

0. Zero on reset.

 11

1. The next instructions address is PC+1 (all instructions except branches)
2. The branch target PC+1 + offset. (Branch instructions).
3. It is taken from a data register. (This is used for returning from procedures).

This is reflected by the following program text, and shown in Figure 16.8.
reg [17:0] PC;
reg [31:0] IRBuf;
wire [31:0] IR;
wire [31:0] pmout;
wire [17:0] pcmux, nxpc;
wire cond;

IR = codebus;
nxpc = PC + 1;
pcmux = (~rst) ? 0 :
 (stall) ? PC : // stall
 (BR & cond & u) ? off + nxpc :
 (BR & cond & ~u) ? C0[19:2] :
 nxpc;

always @ (posedge clk) PC <= pcmux; end

Fig. 16.8. The control unit

Branches are the only conditional instructions. Whether a branch is taken or not, is determined by
the combination of the condition flags selected by the condition code field of the branch
instruction. IR[27] is the condition sense inversion bit.

reg N, Z, C, OV; // condition flags
wire S;
assign S = N ^ OV;
assign cond = IR[27] ^
 ((cc == 0) & N | // MI, PL
 (cc == 1) & Z | // EQ, NE
 (cc == 2) & C | // CS, CC
 (cc == 3) & OV | // VS, VC
 (cc == 4) & (C|Z) | // LS, HI
 (cc == 5) & S | // LT, GE

Program counterInstr Reg

+ 1

Memory adr

C0 +

decode

pcmux

offset

nxpc

IR, N, Z

codebus

 12

 (cc == 6) & (S|Z) | // LE, GT
 (cc == 7)); // T, F

There is, unfortunately, a complication obfuscating the simple scheme presented so far. It stems
from the necessity to initialize the processor. Only registers and memory blocks (BRAM) can be
initialized and loaded by the available FPGA-tools. How, then, is a program (in our case the boot
loader) moved into memory, the chip-external SRAM? The following scheme has been chosen:

The initial program is loaded into a BRAM (1K x 32). This block is memory-mapped into high-end
addresses in the range of the data stack. On startup, the flag PMsel is set and IR is loaded from
pmout (from the BRAM) at StartAdr. At the end of the program (boot loader), a branch instruction
with destination 0 jumps to the beginning of the program that had just been loaded into SRAM by
the boot loader. This is, presumably, but not necessarily, the operating system. The following
changes and additions are required:

localparam StartAdr = 18'b111111100000000000; // 0FE000H

reg PMsel; // memory select for instruction fetch
reg [31:0] IRBuf;

dbram32 PM (// BRAM
 .clka (clk),
 .rdb (pmout), // output port
 .ab (pcmux[10:0])); // address

assign IR = PMsel ? pmout : IRBuf;

always @ (posedge clk) begin
 PMsel <= ~rst | (pcmux[17:11] == 7'b1111111);
 IRBuf <= stall ? IRBuf : codebus;
 ...
end ;

 13

17 The processor's environment

The RISC processor is embedded in an environment (module RISCTop.v) connecting it with
elements that are FPGA-chip external, but whose are provided on the Spartan development board
(Figure 17.1). The environment consists of an address decoder, a data multiplexer, and interfaces
to the memory and peripheral devices..

Figure 17.1 The RISC configuration

The decoder for output and the multiplexer for input determine the various addresses of devices:

adr input output
0 0FFFFFFC0H millisecond counter reserved
4 0FFFFFFC4H switches LEDs
8 0FFFFFFC8H RS-232 data RS-232 data
12 0FFFFFFCCH RS-232 status RS-232 control
16 0FFFFFFD0H SPI data (SD-card, net) SPI data (SD-card, nat)
20 0FFFFFFD4H SPI status SPI control
24 0FFFFFFD8H PS/2 keyboard
28 0FFFFFFDCH mouse

The circuitry connecting with the SRAM is part of this module, whereas the drivers for the other
devices are described in separate modules. Note: The signals to and from devices must be listed in
the heading of the top module, which is not imported by any other module. Their pin numbers are
specified in a configuration file (.ucf). For details, the reader is referred to the program listing, as
several items are rather dependent on the given Spartan-3 board.

17.1. The SRAM memory
The design of the circuitry around a static RAM is quite straight forward. The only controls are a
read (SRoe) and a write enable signal (SRwe). Since the SRAM multiplexes data lines for input and
output, a tri-state driver (SRbuf) must be used on the FPGA. This is shown schematically in Figure
17.2.

adr
codebus
 inbus
 stallX

adr
rd
wr

ben
outbus

keybrd
mouse
(PS-2)

disk
SD-card
(SPI)

net
(SPI)

memory
(SRAM)

display
(VGA)

clk

 rst

decoder

LED

 14

Figure 17.2. Connections between processor and SRAM

However, there is a complication: the feature of byte-wise access. After all, the present RAM is 32
bits wide (actually there are two 512K x 16-bit chips in parallel). Evidently, some multiplexing is
unavoidable. The task is significantly eased by the chip's feature of four separate write enables,
one for each byte of a word. The selection of the byte affected is determined by address bits 0 an 1
(which are ignored in the case of word-access). This scheme is shown in Figure 17.3. The codebus
bypasses the multiplexers.

Figure 17.3 Multiplexers for SRAM byte access

17.2. Peripheral interfaces
Each of the interfaces to external media is implemented as a separate module and can therefore
easily be exchanged. Modules are connected with the processor by the input and the output bus,
and by enable signals wr and rd.

17.2.1. The PS/2 interface for the keyboard

PS/2 is mostly used for input devices. It uses 2 wires (apart from ground)., one for data, one for the
clock. It uses a synchronous transmission, and the clock is driven by the device. Here it is used for
the keyboard and the mouse (see Sect. 17.2.5). Transmission occurs in packets of 8 bits. An
optional third wire serves for output. It is not used in this application. The interface is very simple
and consists of an 8-bit buffer register. The following describes the interface for the keyboard.

SRAM

outbus

SRdat inbus0 inbus

SRbuf

devices aluRes

nxpc

RISC1Top RISC1

adr

SRwe
SRoe
SRadr

regmux

SRAM

outbus[15:8]

outbus[7:0]

outbus[23:16]

outbus[31:24]

inbus[7:0]

inbus[15:8]

inbus[23:16]

inbus[31:24]

 15

A bit is shifted into the data register whenever the clock shows a falling edge, i.e. the clock signal
Q0 is low and the clock delayed by one cycle Q1 is high.

Figure 17.4 The PS/2 configuration

In the driver for the keyboard a 16-byte fifo buffer is inserted, forming a queue. This is necessary in order to
avoid loss of characters when the processor is tied up in computation.

module PS2(
 input clk, rst,
 input done, // "byte has been read"
 output rdy, // "byte is available"
 output shift, // shift in, transmitter
 output [7:0] data,
 input PS2C, // serial input
 input PS2D); // clock

reg Q0, Q1; // synchronizer and falling edge detector
reg [10:0] shreg;
reg [3:0] inptr, outptr;
reg [7:0] fifo [15:0]; // 16 byte buffer
wire endbit;

assign endbit = ~shreg[0]; //start bit reached correct pos
assign shift = Q1 & ~Q0;
assign data = fifo[outptr];
assign rdy = ~(inptr == outptr);

always @ (posedge clk) begin
 Q0 <= PS2C; Q1 <= Q0;
 shreg <= (~rst | endbit) ? 11'h7FF :
 shift ? {PS2D, shreg[10:1]} : shreg;
 outptr <= ~rst ? 0 : rdy & done ? outptr+1 : outptr;
 inptr <= ~rst ? 0 : endbit ? inptr+1 : inptr;
 if (endbit) fifo[inptr] <= shreg[8:1];
end
endmodule

17.2.2 The Mouse

Subsequently we present two Mouse interfaces. The first (MouseP) is based on the PS/2 Standard
and caters for most commercially available mice. The second (MouseX) is included here for
historical reasons. It was used by the computer Lilith in 1979, and used the same Mouse as its
ancestor Alto (at PARC, 1975). It is distinguished by a very simple hardware without its own
microprocessor, which is currently contained in most mice. This goes at a cost of a 9-wire cable.
But today, microprocessors are cheaper than cables. We include this interface here, because it
allows for a simple explanation of the principle of pointing devices.

The first interface uses the PS/2 Standard, that is, a 2-wire cable (not counting ground and power).
It complies with the commercial standard of pointing devices. Details are shown on module
MouseP.v.

module MouseP (input rst, clk,
 inout PS2C, PS2D,
 output [27:0] out);
endmodule

device RISC
clock

data data

PS2D

PS2C

 16

The second interface described here is not based on any standard, but it features the same
interface to the software environment. Its principles are very simple and easily explained, and it
refrains from the use of a mouse-internal processor. The price for this simplicity is a cable with 7
wires (plus 2 for power and ground), namely 3 for 3 buttons, and 2 for each direction, x (left/right)
and y (up/down).

Let us first explain how signals indicating movements are derived. The key reason for the solution's
simplicity is that these signals are directly mirrored by the position of a cursor on the display. The
human user simply moves the Mouse until the cursor has reached the desired position (for
example, at a displayed object). Thereby, the human eye and hand are included in the feedback
loop providing the desired precision. This represents a very clever symbiosis between man and
computer.

An actual movement is recognized by a simple light sensor (we will restrict our observation to a
single coordinate x). The movement is transmitted to a wheel consisting of a transparent disc with
intransparent spokes. A light beam shines through the disk and is received by the light sensor.
Each time a spoke passes, the light is blocked. Any change in the sensor output signals a
movement (see Figure 17.5). Unfortunately, this scheme does not allow to recognize the direction
of the movement (left or right). A second light and sensor solve this problem. The distance between
the two lights is half the distance of adjacent spokes.

Figure 17.5 Wheel with spokes and sensors

The signal pair x0, x1 originating from a movement (with constant speed) to the left or to the right is
shown in Figure 17.6.

Figure 17.6 Signals resulting from movements

The logic equations for movements to the left and right (or up and down) are derived from this signal
pair. For each signal a register records the state. Therefore it can be determined whether a move to
the left, or to the right, or no move had occurred. The sampling frequency is irrelevant, as long as it is
high enough. Let x01 be x00 delayed by one clock cycle, and x11 be x10 delayed by one cycle.

x00 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x01 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x10 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
right 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0
left 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0

x0 x1

x0

x1

turn left turn right

 17

Every active right signal causes the 10-bit x counter to be incremented, and every left to be
decremented.

An identical circuit is used for the up/down direction, with its wheel set perpendicular to the first
wheel. Finally, the output is packed into a single word. 3 bits are taken by the keys, and 10 by each of
the two counters.

module MouseX(
 input clk,
 input [6:0] in,
 output [27:0] out);

 reg x00, x01, x10, x11, y00, y01, y10, y11;
 reg ML, MM, MR; // keys
 reg [9:0] x, y; // counters

 wire xup, xdn, yup, ydn;

 assign xup = ~x00&~x01&~x10&x11 | ~x00&x01&x10&x11 | x00&~x01&~x10&~x11 | x00&x01&x10&~x11;
 assign yup = ~y00&~y01&~y10&y11 | ~y00&y01&y10&y11 | y00&~y01&~y10&~y11 | y00&y01&y10&~y11;
 assign xdn = ~x00&~x01&x10&~x11 | ~x00&x01&~x10&~x11 | x00&~x01&x10&x11 | x00&x01&~x10&x11;
 assign ydn = ~y00&~y01&y10&~y11 | ~y00&y01&~y10&~y11 | y00&~y01&y10&y11 | y00&y01&~y10&y11;
 assign out = {1'b0, ML, MM, MR, 2'b0, y, 2'b0, x};

 always @ (posedge clk) begin
 x00 <= in[3]; x01 <= x00; x10 <= in[2]; x11 <= x10;
 y00 <= in[1]; y01 <= y00; y10 <= in[0]; y11 <= y10;
 MR <= ~in[4]; MM <= ~in[5]; ML <= ~in[6];
 x <= xup ? x+1 : xdn ? x-1 : x;
 y <= yup ? y+1 : ydn ? y-1 : y;
 end
endmodule

17.2.3. The SPI interface for the SD-card (disk) and the Net

SPI (Standard Peripheral Interface) is similar to PS/2, and also synchronous. However, there may
be many participants. They are configured in a loop as shown in Figure 17.7, and the clock is
provided by a master, namely the RISC. SPI requires 3 wires (apart from ground).

Figure 17.7 SPI-configuration as a ring

Here, however, no use is made of SPI's ring topology. Instead, One master interface is serving both the disk
and the net. The connection is determined in module RISC5Top. The packet (and thus the shift register)
is 32 bits long

Transmission frequency is 0.4 MHz at startup (as required by the SD-card), and then is raised to
8.33 MHz.. Details are shown in the respective program listing.

data data data data

shclock

 18

Figure 17.8 Connections between SPI, SD-card, and Net (see RISCTop5.v)

// Motorola Serial Peripheral Interface (SPI) PDR 23.3.12 / 16.10.13
// transmitter / receiver of words (fast, clk/3) or bytes (slow, clk/64)
// e.g 8.33MHz or ~400KHz respectively at 25MHz (slow needed for SD-card init)
// note: bytes are always MSbit first; but if fast, words are LSByte first

module SPI(
 input clk, rst,
 input start, fast,
 input [31:0] dataTx,
 output [31:0] dataRx,
 output reg rdy,
 input MISO,
 output MOSI, SCLK);
endmodule

The SPI specifications postulate that bytes are sent with the most significant bit first. This results in
a somewhat twisted scheme for shifting bits (see Fig. 17.9).

shreg <= {shreg[30:24], MISO, shreg[22:16], shreg[31], shreg[14:8],
 shreg[23], shreg[6:0], shreg[15]}

Figure 17.9 Shifting with MSB first

17.2.4. The display controller

A controller for a raster scan display feeds data from memory to the display. The data area in
memory is called frame buffer. It contains a fixed number of bits for each pixel on the screen. In this
case, there is exactly one bit per pixel, signalling black or white. For a 1024 x 768 pixel display
area, 96 Kbyte are required.

The pixel position on the display is not determined by an address. Instead, data are received by rhe
display purely sequentially, and the position is indirectly determined by two synchronization signals,
hsync (for horizontal sync) at the end of each line, and vsync (for vertical sync) at the end of every
frame. This scheme originates from cathode ray tube (CRT) monitors, where an electron beam is
sweeping the screen. It is deflected by magnetic fields, which require some time to sweep back.
The timing with retrace periods was retained for LCD displays as a legacy.

.fast
 .MOSI
.MISO .SCLK

SPI

MISO[0] (Card)

MISO[1] (Net)

SS[0] (Card)
MOSI[0]
SCLK[0]

SS[1] (Net)
MOSI[1]
SCLK[1]
NEN (net enable)

spiCtrl

0 8 16 24

 19

The heart of the controller consists of a data buffer (32 bits) fed from memory and shifted out bit by
bit to the display, and of two counters hcnt and vcnt, representing the horizontal and vertical
coordinates.The memory word address is derived from hcnt and vcnt:

vidadr = (hcnt DIV 32) + (vcnt * 32) + org

Every line consists of 1024 pixels (32 words). The challenge is to find a design with as few registers
and comparators as possible. There are two signals for suppressing video data: hblank, vblank.
They are needed for turning the light off durich retrace.

Figure 17.10 Synchronization and blanking signals

Let us generalize this scheme to displays of w pixels per line and h lines per frame. Also, let w' be
the number of pixels per line including those of the retrace time, and h' be the number of lines
including the vertical retrace. Also, let the number of displayed frames per second be n. Then the
pixel frequency is

f = w' × h' × n.

This will in all probability be different from the system clock's frequency. Therefore the need arises
for a diffenernt pixel clock. It is generated by the FPGA's built-in digital clock manager (dcm). It
multiplies and divides the system clock by selectable factors. Note that the refresh rate may vary
within certain bounds for all brands of monitors. Therefore, a simple factor may be chosen for
division and multiplication. Examples:

(1024 x 768) 1182 x 791 x 60 = 56'097'720 rounded up to 60 MHz
(1280 x 1024) 1536 x 1280 x 60 = 117'964'800 rounded up to 125 MHz

The pixel buffer is fed from the video buffer driven by the system clock, and it is shifted and read by
the pixel clock. This makes a double-buffering necessary, as shown in Figure 17.11. Also the
counters are driven by this pixel clock. The numbers for hcnt and vcnt shown are, of course, device-
specific (see Figure 17.10).

Figure 17.11 Buffering the video output

module VID(
 input clk, clk25, inv,
 input [31:0] viddata,
 output reg req, // read request
 output hsync, vsync, // to display

hsync

hcnt 0 537 553 591

hblank

512

vsync

vcnt 0 772 776 791

vblank

512

vidbuf

pixbuf

clk

pclk vid

viddata

 20

 output [17:0] vidadr,
 output [2:0] RGB);
localparam Org = 18'b1101_1111_1111_0000_00; // DFF00
reg [9:0] hcnt, vcnt;
reg [4:0] hword; // from hcnt, but latched in the clk domain
reg [31:0] vidbuf, pixbuf;
reg hblank;
endmodule

Both the display controller and the processor access memory directly. It therefore becomes
necessary to arbitrate in the case where both require access simultaneously, that is, to decide
which has priority. The decision is simple, because the display controller is time-critical and must
not be delayed. The processor, on the other hand, can easily be delayed by the already present
stalling scheme. The signal (wire) dspreq stalls the processor (stallX) and decides whether the
memory address (SRadr) should be taken from the processor (adr) or the display controller
(vidadr). The following multiplexer is placed in module RISCTop:

assign SRadr = dspreq ? vidadr : adr[19:2];

17.2.5. The RS-232 interface

RS-232 is an old standard for serial data transmission (see also Sect. 9.4). We chose to describe it
here in detail because of its frequent use and inherent simplicity. RS-232 uses 2 wires (apart from
ground), one for input (RxD) and one for output (TxD) as shown in Figure 17.12. Data are
transmitted in packets of a fixed length, here of length 8, i.e. byte-wise. Since there is no clock wire,
bytes are transmitted asynchronously. Their beginning is marked by a start-bit, and at the end a
stop-bit is appended. Hence, a packet is 10 bits long (see Figure 17.13). Within a packet,
transmission is synchronous, i.e. with a fixed clock rate, on which transmitter and receiver agree.
The packet length is short enough to admit slight deviations. The standard defines several packet
lengths and many clock rates. Here we use a rate of 19200 or 115200 bit/s.

Figure 17.12 RS-232 configuration

Figure 17.13 RS-232 packet format

The input signal start triggers the state machine by setting register run. The transmitter has 2
counters and a shift register. Counter tick runs from 0 to 1302, yielding a frequency of 25’000 / 1302
= 19.2 KHz, the transmission rate for bits. The signal endtick advances counter bitcnt, running from
0 to 9 (the number of bits in a packet). Signal endbit resets run and the counter to 0. Signal rdy
indicates whether or not a next byte can be loaded and sent.

module RS232T(
 input clk, rst, // system clock, 25 MHz
 input start, // request to accept and send a byte
 input [7:0] data,

start bit stop bit

bitcount = 0 1 2 3 4 5 6 7 8 9

transmitter

receiver

TxD

RxD

receiver

transmitter
TxD

RxD

 21

 output rdy, // status
 output TxD); // serial data

wire endtick, endbit;
reg run;
reg [11:0] tick;
reg [3:0] bitcnt;
reg [8:0] shreg;

assign endtick = tick == 1302;
assign endbit = bitcnt == 9;
assign rdy = ~run;
assign TxD = shreg[0];

always @ (posedge clk) begin
 run <= (~rst | endtick & endbit) ? 0 : start ? 1 : run;
 tick <= (run & ~endtick) ? tick + 1 : 0;
 bitcnt <= (endtick & ~endbit) ? bitcnt + 1 :
 (endtick & endbit) ? 0 : bitcnt;
 shreg <= (~rst) ? 1 : start ? {data, 1'b0} :
 endtick ? {1'b1, shreg[8:1]} : shreg;
end
endmodule

The receiver is structured very similarly with 2 counters and a shift register. The state machine is
triggered by an incoming start bit at RxD. The state rdy is set when the last data bit has been
received, and it is reset by the done signal, generated when reading a byte. The line RxD is
sampled in the middle of the bit period rather than at the end, namely when midtick = endtick/2.

module RS232R(
 input clk, rst,
 input done, // "byte has been read"
 input RxD,
 output rdy,
 output [7:0] data);

wire endtick, midtick;
reg run, stat;
reg [11:0] tick;
reg [3:0] bitcnt;
reg [7:0] shreg;

assign endtick = tick == 1302;
assign midtick = tick == 651;
assign endbit = bitcnt == 8;
assign data = shreg;
assign rdy = stat;

always @ (posedge clk) begin
 run <= (~RxD) | (~rst | endtick & endbit) & run;
 tick <= (run & ~endtick) ? tick + 1 : 0;
 bitcnt <= (endtick & ~endbit) ? bitcnt + 1 :
 (endtick & endbit) ? 0 : bitcnt;
 shreg <= midtick ? {RxD, shreg[7:1]} : shreg;
 stat <= (endtick & endbit) ? 1 : (~rst | done) ? 0 : stat;
end
endmodule

	Title Page
	Preface
	Preface to 2013 Edition
	1 History and Motivation
	2 Basic Concepts
	2.1 Introduction
	2.2 Concepts
	2.3 System Structure
	2.4 Chapter Tour

	3 Tasking System
	3.1 Tasks
	3.2 Task Scheduler
	3.3 Commands
	3.4 Toolboxes

	4 Display System
	4.1 Screen Layout Model
	4.2 Viewers
	4.3 Frames
	4.4 Display Management
	4.5 Raster Operations
	4.6 Display Configs

	5 Text System
	5.1 Texts
	5.2 Text Management
	5.3 Text Frames
	5.4 Fonts
	5.5 Edit Toolbox

	6 Module Loader
	6.1. Linking and Loading
	6.2 Module Repr
	6.3 Linking Loader
	6.4 Loader Toolbox
	6.5 Object File Format

	7 File System
	7.1 Files
	7.2 RAM Store
	7.3 Disk Store
	7.4 File Directory
	7.5 File Toolbox

	8 Memory Storage
	8.1 Storage Layout
	8.2 Dynamic Storage
	8.3 Kernel
	8.4 Storage Toolbox

	9 Device Drivers
	9.1 Overview
	9.2 Keyboard and Mouse
	9.3 SD Card
	9.4 RS-232 Port
	9.5 SCC Controller

	10 Network
	10.1 Introduction
	10.2 Protocol
	10.3 Station Addressing
	10.4 Implementation

	11 File and Mail Server
	11.1 Server Structure
	11.2 Email Service
	11.4 Misc Services
	11.5 User Administration

	12 Compiler
	12.1 Introduction
	12.2 Code Patterns
	12.3 Data and Modules
	12.4 Parser
	12.5 Scanner
	12.6 Symbols
	12.7 Code Generator

	13 Graphics Editor
	13.1 History and Goal
	13.2 User Guide
	13.3 Editor Structure
	13.4 Displaying Graphics
	13.5 User Interface
	13.6 Macros
	13.7 Object Classes
	13.8 Implementation
	13.9 Rectangles and Curves

	14 System Tools
	14.1 Startup Process
	14.2 Build Tools
	14.3 Maintenance Tools

	15 Modules
	15.1 Math Functions
	15.2 Data Link
	15.3 Graphic Macros

	16 RISC Processor
	16.1 Introduction
	16.2 ALU Unit
	16.3 FPU Unit
	16.4 Control Unit

	17 Processor Environment
	17.1 SRAM memory
	17.2 Peripheral Interfaces

